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Abstract

This paper deals with using causality as a priori infor-
mation to overcome the difficulties associated with the
compensation of source and receiver ghosts in seis-
mic data. A mathematical approach to a rather gen-
eral linear inverse problem is presented followed by
some specific synthetic examples that makes it clear
its shortcomings and points to new strategies to deal
with the inherent uncertainties on the process model
parameters.

Introduction

Many seismic processes are mathematically described by
ill-posed or ill-conditioned linear equations. Often, the so-
lution to such equations is known only up to the extent of
the associated null space of the operator that characterizes
the problem. At this point, different a priori information are
gathered so as to reduce the uncertainties and increase
stability in the solution estimate.

Causality is intrinsic to almost all seismic processes and
represent a large source of information that may some-
times “heal” (as a spectral patch) some of the common dif-
ficulties in inverting seismic problems. Causality implies as
many additional equations or constraints to a linear inver-
sion problem as negative times are used. Thus, at least
in principle, a large amount of ill-conditioned problems may
have indeterminacy reduced. Requiring causality is anal-
ogous to require compact support and what is discussed
below could be easily extended to accomplish this broader
condition.

A formal expression for the solution of a general causal
linear problem like,

A x = b (1)

that satisfies x = 0 for time t < 0, may be written so that
causality is strictly considered. Rewriting A as

A = V ΛUH (2)

where U and V are orthogonal matrices and Λ is diagonal,
the inverse of A is defined in terms of the inverse of Λ.
Defining b̃ = V Hb, attaching subscripts s and u standing for,
respectively, “stable” and “unstable”, to the inverse of the
elements λ of Λ according to λs ≥ threshold > λu, one may
write, ∣∣∣∣ x
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where superscripts > and <, respectively, stands for t > 0
and t < 0.

From the t < 0 part of equation (3) above, it is possible to
write,
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which allows to estimate, in a least square sense, the
pseudo-inverse of the unstable (unknown) components of
A in terms of its well-behaved subspace. This in turn yields
the following expression for the solution x,
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b̃s (5)

which depends only on the stable part of the operator A.

The Stationary Case

The case where the operator A is stationary (A is a
Toeplitz and circular matrix) is of particular interest
(Oliveira, 2014). In this case, A can be diagonalized with
Fourier transforms and expression (2) can be read as,

A = F−1
ΛF (6)

where F is the discrete Fourier transform. This case is
much simpler and less expensive computationally since
only fast Fourier transforms are required.
Thus, for a stationary matrix A, expression (5) can be
seen as a sequence of operations given by:

1. Fourier transform the right hand side of equation (1)
to get b̃;

2. Fourier transform the inner convolution operator in
A and define the stable and unstable spectral parts;

3. Accordingly slice Fourier inversion matrix so as sta-
ble, unstable, positive and negative times, are iden-
tified and estimate the patch as given in (4);

4. Finally combine the estimated patch with stable part
of the solution as in (5) to get x.

Ghosts

Source and receiver’s ghosts are present when sources
and/or receivers are placed close enough to a highly re-
flective interface to produce a secondary arrival at a short
time interval as compared to the seismic pulse extension.
In this case, all reflections seems “blurred” with smaller res-
olution. In the Fourier domain, the ghost operator is given
by,

G(ω, tg) = 1− r0e−iωtg (7)

where tg and ω are, respectively, the ghost time interval
and the angular frequency, and r0 is the ghost generating
interface reflection coefficient.
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When the offset between source and receivers are not
small as compared to the depth of the reflectors of in-
terest, the ghost time interval varies with the observation
time t. The ghost time interval is smaller for shallower
events and tends to tg = 2zg/v as depth increases, zg is
the source/receiver distance to ghost generating interface.
The ghost operator tends asymptotically to be stationary for
deeper events but shallower events (greater offsets) may
deserve special attention.

For the sake of simplicity, let’s write the relation between
seismic traces with and without ghost in the following way,

Sg(ω) = G(ω, tg(t))s(t) (8)

with s(t) the trace without ghost in time-domain, Sg(ω) the
trace with ghost in the frequency domain, and G(ω, tg) a
matrix with entries given by:

Gm,n =
[
1− r0e−iωmtg(tn)

]
e−iωmtn

for a given function tg(t).

Expression (8) above can be cast in the form of (2) if one
writes G = WΛUH and apply a Fourier transform:

sg = FGs = FWΛUH s = V ΛUH s (9)

where FW was rewritten as another (also orthogonal) ma-
trix V .

Synthetic examples

A synthetic trace with source-receiver offset of 3000 m,
constant velocity of 2000 m/s and reflections set so as to
appear at constant 0.2 s time interval is considered. The
source and receiver distances to the ghost generating in-
terface are, respectively, 0 and 30 meters and the ghosts
are generated with a reflection coefficient of r0 = −1. The
ghost time intervals at the registered events vary from 10
to 27 milliseconds for corresponding notch frequencies of
about 95 to 36 Hz. Figure 1 shows the seismic pulse and
its frequency spectrum. Figure 2 shows a seismic trace
with ghosts at different events and its corresponding fre-
quency content. The diversity of notches yields an appar-
ently notch free trace. Regular seismic process would at-
tempt to compensate for a single (stationary) ghost usually
yielding severe stability problems.

The question of how to determine the correct ghost opera-
tor (it depends on sea surface waves, tidal effects, etc.) is
a major concern. However, this is not treated in this paper.
This paper is rather concerned with basics in the use of
causality to help defining a physically acceptable solution.

Figure 3 brings a comparison between the solution com-
ponents xs = U>

s Λ−1
s b̃s and xu = U>

u Λ
−1
u b̃u, respectively, the

stable component and the unstable complement as given
in (4). Figure 3 indicates that the lack of information due
to a cut in the spectrum of the ghost operator can be per-
fectly covered by the causality property. Figure 4 shows
the comparison between the original trace and the result of
xs + xu which represents the compensation for ghosts us-
ing causality. Figure 5 has the spectrum of the result to
be compared to the spectra shown at figure 1 (the pulse
spectrum) and figure 2 (the original trace with ghosts).

Figure 1: From top to bottom: seismic pulse, seismic pulse fre-
quency spectrum.

Figure 2: From top to bottom: seismic trace, seismic trace fre-
quency spectrum

Noise

The basic assumption of a causal trace after applying the
(correct) inverse of a linear operator is expected to hold for
the signal. Noise may not fill this requirement. The inverse
operator is not expected to produce a causal result even
if causal noise is considered since, by definition, noise is
not supposed to be part of the underlying physical model
describing the system.

Causality is not clearly apparent in a real seismic trace.
In fact, typically, sampling begins at t = 0 and no informa-
tion about the noise before recording is available. To use
causality, one must pad real traces with zeros for negative
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Figure 3: Black: the stable component; Blue: the unstable (or
complement to causal) component.

Figure 4: Black: the original trace with ghosts; Green: the result-
ing trace after summing stable and unstable components.

Figure 5: The Fourier spectrum of the result. It can be described
as the spectrum of a “comb” of spikes modulated by the pulse
spectrum, as expected.

times. This makes every event causal until the inverse filter
is applied. After inversion, only events that fill in the model
is expected to remain causal.

In Oliveira (2015), it is discussed a trade-off between the
selection of the unstable portion, the amount of random
noise, and the quality of the solution for the stationary
case. It is interesting to notice that defining a shorter un-
stable region produces a greater amount of noise since
one gets closer to the singularities of the ghost operator.
On the other hand, a rather big unstable region prevents
the method from using the reliable information to compute
the spectral patching or causal complement to the solu-
tion. At some extent, these considerations are valid for the
non-stationary case. However, since notches may not be
evident due to its diversity, the consequences of a smaller
unstable region might not be that clear.

Another important aspect to consider when noise is present
is that the spectral patching as defined in (4) is the least

Figure 6: The input trace with random noise. Note the apparent
signal to noise ratio for comparison with the resulting trace after
inversion and spectral patching shown at figure 7.

Figure 7: The result of inverting with the causal complement as
a spectral patching to the trace given at figure 6. Top: a broader
window; Bottom: a zoom over shorter times. In both figures, Black:
the original trace with ghost and no noise; Blue: the desired result
with no ghost (without noise); and Green: the result without ghost
but with amplified noise.

square norm causal complement. It is not unique. It is de-
fined after the pseudo-inverse of [U<H

uU<
u ] is computed and

this depends on a definition of another “stable region”. In
figure 3, this pseudo-inverse was computed with a rather
small tolerance for the pseudo-inverse, for conceptual rea-
sons. This can not be made if a relatively big amount of
noise is present.

Figure 6 shows the input trace with random noise. Figure 7
has the result of the process applied to the trace at figure
6. The amount of noise has increased remarkably. For a
moderate amount of noise this effect is not expected to be
so clear but it will still be there and has to be avoided.

Summary and Conclusions

An alternative method to handle difficulties in ill-posed/ill-
conditioned non-stationary linear inversion problems based
on the causality of the solution was presented. A Practi-
cal example of source and receiver ghosts in seismic data
was discussed. Limitations and perspectives for reaching
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a broader frequency spectrum were addressed with syn-
thetic data with and without random noise. According to
what was shown, a careful control of the extent of the un-
stable zone to be patched is fundamental to accomplish a
less noisy and more precise result. Another fundamental
aspect in this procedure, not addressed here, is the defini-
tion of the ghost operator itself which has a direct impact
on the basic hypothesis of a causal solution.
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