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Abstract

Applying 1D inversion to 2D magnetotelluric data
allows the geophysicist to obtain fast and meaningful
results, despite the inherent limitation of trying to
approximate the subsurface response by models that
vary only in one direction. This paper presents a way
to minimize this limitation by performing the inversion
of a set of MT soundings with constraints that take
into account the lateral variations in the resistivity of
the subsurface. The data from all sounding stations
in a MT survey line are inverted jointly, producing
layered columns with lateral smooth transitions. This
process takes advantage of the low computational cost
of 1D inversions, and it generates an approximate 2D
model that can be useful as a first guess in a full 2D
inversion. A synthetic example was used to evaluate
the practical utility of the algorithm. The best results
were obtained where the electrical structure of the
earth is predominantly 1D and the structures showing
2D behaviour are not too close to each other.

Introduction

The interpretation of magnetotelluric (MT) data can be
done either qualitatively, by means of the apparent
resistivity an phase pseudo-sections, or by solving the
inverse problem, which consists in determining the geo-
electrical structures from the geophysical data. Starting
with the observed data and a physical law, it is possible
to obtain the parameters of an interpretive model of the
subsurface. However, this is a difficult problem because
of the complexity of the Earth’s interior structures and the
lack of enough information in the observed data to resolve
those structures.

1D inversion of data from a single sounding station
can be performed to resolve the resistivities of a
layered interpretive model composed by a number of
homogeneous layers over a homogeneous half-space. In
this case, the forward modeling problem is a fast and
accurate implementation of an analytical solution (Vozoff,
2012), which leads to an inversion program that is fast and
economical in terms of memory requirement.

When lateral variations exist in the geo-electrical structure,
a full 2D or even 3D inversion may be required for better
accuracy. In these cases, one can simply start with a
homogeneous interpretive model and leave the iterations
converge to a solution. The choice of a first guess that may

already be an approximation of the true values sought in
the inversion can reduce the processing time by requiring
less iterations to converge.

In this paper, we apply a method to generate approximate
first models for MT inversion, using 1D joint inversion of
data from the whole set of sounding stations spread on
a survey line. The method implements a 1D laterally
constrained inversion (LCI) technique (Miorelli, 2011) that
is capable of performing inversion of large datasets, at
a low computational cost. An analysis of the method is
performed by applying it to synthetic data sets from two-
dimensional models.

Methodology

1D inversion of data from a single MT sounding station
can be performed to generate resistivity values for a
sequence of homogeneous layers. This is an intrinsically
ill-posed problem (Hadamard, 1902), due to the limited
amount of information in the data, the existence of several
different sources of noise, and the complexity of the real
geological structures, which is always greater than that
of the interpretive model. Therefore, a stable solution
will be achieved only with the inclusion of some kind
of constraint on the parameters. Usually, smoothing
constraints (Constable et al., 1987) are used because they
are simple to implement, and guarantee a solution, even if
sometimes at the expense of a better fitting of the data.

Inverting each sounding separately can generate useful
models. However, in most areas of interest there will
be regions where the two-dimensional nature of the geo-
electrical structures imposes itself on the observations,
making it impossible to properly fit the sounding curves
with synthetic data from layered models. In these cases,
it is desirable that the inversion of one sounding be allowed
to influence the inversion of its neighbouring soundings,
in such way that the demand for fitting the data can be
relaxed in favor of the demand to generate laterally smooth
solutions.

The method described in this paper performs the joint
inversion of data from a set of MT sounding stations,
each one generating a sequence of resistivity values
that represent a vertical column in a layered model.
All columns, one for each measuring station have the
same number of layers of the same thicknesses. The
method applies lateral smoothing constraints between
the resistivities in the same layers in the columns
corresponding to adjacent sounding stations (Fig. 1).

.
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Figure 1: Example of the organization of parameters in
a 2D structure. The red triangles represent sounding
stations.

In all the examples shown here the method is applied
to synthetic data from 2D transverse magnetic (TM)
propagation mode surveys. The observed data are the real
Re(Ẑ1) and imaginary Im(Ẑ1) components of the apparent
impedance vector. The interpretive model is a horizontal
plane-parallel layered medium and the parameters are
the logarithmic values of the resistivities of each layer
(Zhdanov, 2002; Santos, 2004).

Inversion theoretical revision

Most of the geophysical problems are non-linear, meaning
that the observed data are not a linear combination of
the model parameters. A geophysical dataset d, with No
observations, is to be fit by synthetic data generated from
the Np model parameters in vector P. The relationship
between the synthetic data ds and the parameter set is in
the form

ds = F(P), (1)

where F is an non-linear vector function that represents
the forward modeling operator. This vector function also
depends on the frequency ω, and on the measurement
position (x,y,z).

Since the function F doesn’t have a unique inverse, the
problem of determining a set of parameters that generate
synthetic data that approximate the observations is defined
as that of minimizing a functional φd that measures the
misfit of the model’s forward response F(P) for a given set
of parameters P to the observed data d:

φd(P) = ‖d−F(P)‖2 = [d−F(P)]T [d−F(P)] (2)

In this study, the minimization of the nonlinear functional
φd , with respect to P, was performed iteratively by the
Gauss-Newton method with the Marquardt’s modification
(Marquardt, 1963) .

Regularized Inverse Problem

After the introduction of regularization, a function called
objective function is created and the vector of parameters
P that is to be found is obtained by minimizing this objective
function φα , given by:

φα (P) = φd(P)+α φREG(P) (3)

where α is a positive scalar called the regularization
parameter that controls the importance of the information
inserted by the regularizing functional.

Global Smoothness

The Global Smoothness or first-order Tikhonov (Tikhonov
and Arsenin, 1977) regularization leads to solutions in
which the differences between parameter values are
minimal, that is, variations between parameter values are
smooth. The mathematical representation of the functional
φGS is:

φGS(P) = ‖SP‖2
2 (4)

S is a matrix which stores the relation between the
parameters, each line being filled with 1 and -1 in the
positions of the pairs of parameters to be related and zeros
in the other positions.

Total Variation

The Total Variation regularizer also leads to stable solutions
that are globally smooth, but it allows local discontinuities
that clearly mark abrupt changes in the parameter values.
The mathematical representation of the functional φTV ,
using an approximation proposed by Vogel (1997), is:

φTV (P) = ‖SP‖1 ∼=
Nd

∑
k=1

[(Pi−Pj)
2
k +β ]1/2 (5)

where β is a small and positive scalar.

Gauss-Newton method with Marquardt’s strategy

The objective function φα (Eq. 3) is treated as a second
order approximation φ̂α of φα around point Pk, with the
second order and higher derivatives equal to zero, since
the non-linear geophysical functional is approximated by a
linear function in P.

φ̂α (P)' φα (Pk)+∆Pt
kgα

k +
1
2

∆Pt
kHα

k ∆P (6)

where ∆Pk is the perturbation vector of the parameters, in
the k-th iteration, and

gα
k = (∇Pφα ) |P=Pk (7)

Hα
k = (∇∇

t
Pφα ) |P=Pk (8)

are, respectively, the gradient vector and the Hessian
(second derivative matrix) of the functional φα , both with
respect to the vector P avaliated in Pk.

Then, the gradient vector of φ̂α is calculated with respect
to vector ∆Pk and equated to the null vector. After some
mathematical manipulations (Pujol, 2007), the updated
parameter vector in the k-th iteration is:

Pk+1 = Pk +(2AtA+α HREG)−1(2At(d−F(P))−α gREG)
(9)

where A is the sensitivity matrix, defined as:

Ai j =
∂Fi(P)

∂P j
|P=Pk . (10)
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gREG and HREG are the gradient vector and the Hessian of
the regularizing functional.

Marquardt (1963) suggests adding a factor λ (Marquardt
coefficient) to the diagonal of the Hessian matrix to stabilize
the steps of the process. It is a positive scalar and its value
is changed during the inversion process, according to the
analysis of the objective function φ̂α , in a given estimate,
with respect to the previous estimate. After the addition of
the Marquardt parameter, Eq. 9 turns to:

Pk+1 = Pk +(2AtA+α HREG +λ I)−1(2At(d−F(P))−α gR)
(11)

where I is the identity matrix.

Application

To illustrate the use of the inversion algorithm, we
present its application to two different sets of synthetic
data, generated by a 2D forward modelling finite element
program, each one representing a specific geological
structure. The synthetic data of each problem were
contaminated with 2% Gaussian noise. The starting
models for the examples presented here were a 200 Ohm-
m homogeneous earth. The stability of the solution was
tested by performing the inversion of the same data set
contaminated with different random noise sequences.

Model 1

The first model (Fig. 2) represents a two-layer earth with
a vertical fault. The data comprises ten equally spaced
measuring stations, going from -5km to 5km, with 21
logarithmically spaced frequencies in the range of 0.1 Hz
to 1000 Hz. Figure 3 shows the corresponding apparent
resistivity pseudo section for model 1. Except for the
position of the fault, this model represents a layered earth,
with a 150 m thick layer to the left of the fault and a 300 m
thick layer to the right. Therefore, most sounding stations
record data that can be well fit by a 1D interpretive model.
This example illustrates a situation in which one is better off
using no lateral constraint. So, for this case each sounding
was inverted independently, as a usual 1D inversion, using
the GS and TV constraints in the vertical direction only. The
inversion results using no lateral constraints are presented
in Figure 4.

100
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0 
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Figure 2: Section view of model 1.

The independent 1D inversion of each sounding yields an
approximation of the original model geometry. It can be
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Figure 3: TM mode apparent resistivity pseudo section
from model 1.
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Figure 5: Section view of the model 2.

noted that there is no big difference between the results
using the GS and VT regularizations, except for the more
oscillatory nature of the GS solution, which in this case
is observed in the variations of the resistivities in each
column. The resistivities of each layer are estimated to
a good approximation, throughout the grid except in the
column closest to the position of the fault. Moreover, the
fault itself is clearly resolved.

Because the model is predominantly 1D, that is, with no big
lateral variations of resistivity, the independent 1D inversion
of each sounding is good enough to determine the layer
interfaces and its resistivities.

Model 2

Figures 5 and 6 show the second model tested in this study
and its corresponding apparent resistivity pseudo section.
This is a two-layer model containing two conductive bodies
(10 ohm.m) located in the upper layer. The data comprises
15 equally spaced measuring stations, going from -1km to
1km, with 21 logarithmically spaced frequencies, varying
from 0.1Hz to 1000Hz.

The inversion results using the GS and TV regularizations
in the vertical direction only (no lateral constraints), are
presented in Figure 7.
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Figure 4: Resistivity models obtained by 1D inversion using (a) Global Smoothness and (b) Total Variation regularization in the
vertical direction and no lateral constraints.
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Figure 7: Resistivity models obtained by 1D inversion using (a) GS and (b) TV regularizations in the vertical direction and no
lateral constraints.
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Figure 6: Pseudo section.

The vertical constraint creates an unwanted smoothing,
with a smudged area below the location of each block.
This shaded area is even bigger below the second block,
probably because its base coincides with the horizontal
interface. For this case, the independent 1D inversion of
each sounding can not give a good solution, because now
there’s no station which isn’t under the influence of the 2D
structures.

The laterally constrained inversion (LCI) of the synthetic
data generated by model 2 resulted in the resistivity models
shown in Figure 8.

Both Figures show good results in the sense of detecting
the presence of the two conductive bodies and the
position of the interface between the layers. The effect
of the vertical constraint, that spread the influence of
the conductive bodies down through the columns, is now
balanced by the influence of the lateral constraints, so the
bodies are better delineated using the LCI.

The inversion result using the GS regularization is
somewhat “over smoothned”. This is most noticeable is the
positions below the conductive blocks, where the artifacts
created by the vertical constraints are stronger. Because
of that, the definition of the interface is impaired.

The inversion with the TV constraints was more efficient
in delineating the bodies both horizontally and vertically,
despite the permanence of the vertical constraint effect.

The apparent resistivity and phase curves are used to show
the data fitting in Figures 9 and 10, with the GS and TV
regularizations, respectively. Note that in this case the data
can not be as well fit as in the first case (model 1), because
now there’s really no measuring station on a position far
from the 2D structures.

CONCLUSION

The results show that the 1D laterally constrained inversion
method applied to MT data is an effective way for
delineating 2D geoelectrical structures. It generates very
fast results in detecting 2D isolated structures, resulting
in an efficient and inexpensive tool for quick imaging,
especially on areas which can not be well approximated
by layered models.

Compared to results using only vertical constraints,
where the soudings are inverted independently, the LCI
decreases the smeared area created by the vertical
constraint below 2D structures. The results using LCI
could also be used as interpretive (initial) models of a 2D
inversion algorithm, avoiding solutions that correspond to
local minima.
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Figure 8: Resistivity models obtained by 1D LCI using (a) GS (λ = 104 and α = 10−4) and (b) TV (λ = 104,α = 3× 10−4 and
β = 10−2) regularizations in both vertical and lateral directions.
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Figure 9: Data adjustment curves for positions (a) x ' −0.57km above the first block (b) x ' 0.001km right in the middle of the
two blocks.
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Figure 10: Data adjustment curves for positions (a) x'−0.57km above the first block and (b) x' 0.001km right in the middle of
the two blocks.
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