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Abstract

The ground-roll is a type of noise associated with land
seismic data. It strongly harms the signal-to-noise ratio,
and interferes in various stages of the seismic data
processing, affecting the final quality of the obtained
seismic images. In this paper we propose a method
of adaptive filters using binomial filters built from the
convolution of pairs of dipoles (1,c) e (c,−1) for the
attenuation of the ground-roll, where c is the first coefficient
prediction error calculated by Burg algorithm. It allows
for the decomposition of signals in frequency bands from
the lowest to the highest adapting to frequency content of
the data. Its implementation and use in the processing
of seismic data is relatively simple and computationally
efficient.

Introduction

One of the most significant challenges in processing of
seismic data is to filter different types of noises. Ground roll
is one of the main types of coherent noise in land seismic
data. It has the significant characteristics of relatively low
velocity, low frequency, high amplitude and strong energy
(Sheriff, 2002). Because of its dispersive nature and low
velocity, ground-roll masks the shallow reflections at near
offsets and deep reflections at far offsets (Saatcilar and
Canitez, 1988; McMechan and Sun, 1991; Saatcilar and
Canitez, 1994; Henley, 2003) and also distorts reflection
events by interfering with them.

Ground-roll (GR), is one of the main coherent noises in
petroleum seismic exploration, many methods have been
introduced to attenuate this type of noise. Although
the right choice of attenuation techniques is a matter
of trial and error (Sheriff and Geldart, 1995). The
conventional methods can be divided into two groups.
The first one can be summarized to filter method which
is based on suppression of undesired parts of recorded
data in the spectral domain, including high-pass and band-
pass filtering, f − k filtering (Embree et al., 1963; Treitel
et al., 1967; Yilmaz, 2001) and the adaptive ground-roll
attenuation method (Wang et al., 2012; Hosseini et al.,
2015). These methods have their limitations. High-
pass and band-pass filter may eliminate the low frequency
component of effective waves since the frequency bands
of ground-roll noise and reflections are often overlapped
(Sirgue, 2006). The conventional f − k filter would cause
serious distortion of effective waves when the energy of
ground-roll noise is much stronger than that of reflections

(McMechan and Sun, 1991; Liu, 1999; Tokeshi et al.,
2006). The other one is wave field separation method
based on ground-roll noise extraction and arithmetical
subtraction of it from the raw shot gather in the tâx domain,
including Wienerâ Levinson algorithm (Karslı and Bayrak,
2004), Karhunen-Loève (K-L) transform (Gómez Londoño
et al., 2005), wavelet transform (Deighan and Watts,
1997a) and Radon transform (Russell et al., 1990a,b).

There are different methods of decomposing a seismic
signal used for suppressing the ground-roll: Decomposition
Empirical Mode (DME), developed by Huang et al. (1998)
and used by Ferreira et al. (2013); singular value
decomposition, SVD used by Porsani et al. (2010), Wavelet
decomposition used by Deighan and Watts (1997b),
decomposition by filtering frequency bands with binomial
operators justified by Akansu and Haddad (2001) and
Vetterli and Herley (1992) used by Ariza and Porsani (2015)
for attenuation ground-roll.

Filtering with binomial operators (Haddad (1971), Akansu
and Haddad (2001), Vetterli and Herley (1992)), enable
decomposition and perfect reconstruction of the signal
through the linear combination of its components. The
decomposition of a signal is made into frequency bands
by means of a matrix operators X̃, which is obtained by
weighting each of the columns of the matrix X j

n (obtained
through the dipoles (1, 1) and (1,−1)) with k coefficient of a
given column a matrix X−1, or X−1a

k . This procedure allows
for the original signal shifted to the position S̃n = Sn ∗ δn−a.
To recover the signal in the initial position just delay it for a
samples.

It can be shown that the construction of the matrix X,
through the dipoles (1, 1) and (1, −1), is just a special
case of a general breakdown binomial with dipoles (α, β )
and (β , −α) where α and β can be real or complex (in
this work we will only consider the case real), where the
values of α and β beta can be arbitrarily chosen or may
be obtained by the features given itself, creating infinite
possibilities of decomposition. This work are used dipoles
adaptively with (1,c) and (c,−1) for filtering the ground-roll,
where c is the first prediction error coefficient calculated
with the burg algorithm.

Theory

Following is presented a form of general binomial
decomposition with dipoles (α, β ) e (β ,−α), where α and
β can be real or complex (in this text we will only consider
the real case). The dipoles (1, 1) e (1,−1) are a special
case of this representation general (Boyd et al., 2001;
Severo and Schillo, 2009; Severo, 2008).

In the case of a binary decomposition of order 1 (N = 1),
the operators matrix X is written as follows:

X =

[
α β

β −α

]
=

[
yT

0
yT

1

]
=
[
x0 x1

]
(1)
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You can verify that X2 = λ I. For the case where N = 1,
λ = α2 +β 2, so the matrix X−1 is:

X−1 =
1

α2 +β 2

[
α β

β −α

]
=

[
α

α2+β 2
β

α2+β 2

β

α2+β 2
−α

α2+β 2

]
(2)

The operator matrix X̃ is obtained, for example, selecting
the first column of X−1 (a = 0). This results in

X̃0 =

 α2

α2+β 2
β 2

α2+β 2

αβ

α2+β 2
−αβ

α2+β 2

 (3)

It should be noted that if the columns of the matrix X̃ are
added together, the result is (1, 0)T .

Applying binary decomposition of order 1 (N = 1) to
a discrete signal {Sn} = {s0, . . . , sM−1} is equivalent to
performing the convolution of the original signal with
each of the columns of the operator matrix X̃0. The
signal recovery is obtained by a simple addition of signal
components.

{Rn}= {Sn}∗{X̃0
0 }+{Sn}∗{X̃0

1 }

= {Sn}∗{X̃
0
0 + X̃0

1 }

= {Sn}∗ (1, 0)T = {Sn}∗{δ n}
= {Sn}

(4)

The operators matrix X for any order N (where X have N+1
columns) is calculated as follows:

X r
n = (α, β )∗(N−r) ∗ (β ,−α)∗r (5)

for 0≤ r ≤ N. Remember that

x∗n = x∗ x∗ x∗ · · · ∗ x∗ x︸ ︷︷ ︸
n

(6)

denotes n-times convolution, where x∗0 = δ0, x∗1 = x and δ0
is the Kronecker delta.

The matrix generated as shown above keeps the property
of orthogonality between rows and columns, i.e., yT

i x j = 0
for i 6= j and yT

i x j = λ N for i = j. That is

X2 = λ
NI (7)

where
λ = α

2 +β
2 (8)

calculating the inverse matrix as

X−1 =
X

λ N
(9)

The property X2 = λ NI is particularly important in signal
decomposition and filtering. We note that, despite of a
scale factor, λ N , X matrix is its own inverse, since the
product it generates by itself is a diagonal matrix. This
property provides N + 1 possibilities to decompose the
original signal, each related to a particular column of the
matrix X̃a (a = 0,1, . . . ,N). The signal can be decomposed
or rebuilt as a linear combination of components, obtained

by convolution of the original signal with the columns of the
matrix X̃a. Each component, {S̃r

n}= {X̃ r
n}∗{Sn}, will have a

different frequency content depending on the values α and
β selected.

The values of α and β can be arbitrary or be calculated
using the characteristics of the data {Sn} = {s0, . . . , sM−1}
(which is adaptive). Consequently, the method is versatile
and has many ways to achieve the decomposition of the
signal {Sn} used for signal analysis or filtering.

Result

In order to get local information from the data, the recursive
Burg algorithm was used to obtain the first coefficient
of prediction error for a specified window’s length (Burg,
1967). It is possible to generate dipoles (1,c) e (c,−1),
where c is the first prediction error coefficient, for a given
window. Taking into account the minimum phase property
of the linear unit error prediction filters when they are
calculated using the least squares method (Appendix A of
Chu (2004)), the first coefficient is always negative less
than one, then the first dipole (1,c) is a differentiation
operator allowing the capture of high frequency information
(depending on the window width) and the second dipole
(c,−1) (both negative) would be an operator of integration
which allows capturing low-frequency information.

We use a 96-channel common-shot-point gather (Figure
6A) acquired in the North-west Brazil (Tacutu Basin) to
demonstrate the feasibility and applicability of the proposed
method. The geophone interval is 50 m. The length of the
record is 4000 ms with a 4 ms sample interval.

There were tested different window sizes (from 20 to 2000
ms), achieving the best contrast between areas with and
without GR with a 200 ms window. In figure 1 the coefficient
values are shown and the contrast between areas with and
without GR are very clear (Compared with Figure 6A).

For the desing of the map of Figure 1, the following
procedure was followed for each trace:

• The coefficient map begins with a value of 0.0.

• The value of the first coefficient error for the window’s
length is calculated using the Burg Algorithm.

• The coefficient value is added to all the positions of
the window’s length in the coefficient map.

• The window is then moved one sample, and the
previous two steps are repeated until the end of the
trace.

At the end, an average is calculated as a function of the
number of values added at each position of the coefficient
map. This procedure is presented in the algorithm 1.

The algorithms used to trace decomposition are shown
bellow (Algorithm 2 and Algorithm 3).

Decomposition and reconstruction of signal

To test the decomposition and perfect reconstruction of
the signal it was used a level of decomposition N = 7
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Figure 1: Representation of the first prediction error
coefficient for Burg algorithms

weighted by the first column of the inverse matrix (a =
0), so the signal is decomposed into 8 shot gather with
different frequency content from highest to lowest. In the
Spectral analysis (average spectra of all traces, Figure 2)
of each sub-image it is evident the effect on the amplitude
distribution. Generally almost all sub-images have lower
amplitude than the original. In the four shot gather shown
in Figure 3 (only four of the eight total sub-images are
depicted for cleaner presentation), it can be seen that
each shot gather has different frequency content. Air wave
(or sound wave) noise exists, which can be identified in
S̃1 with an apparent velocity of about 340 m/s (Figure
3A). It is evident that air wave is a type of non-dispersive
coherent noise, as same as body wave. As seen in sub-
image S̃7, reflections are heavily contaminated by largely
dispersed ground-roll noise (Figure 3D). Remember that
our signal has more information between 0 and 50 Hz of the
amplitude spectrum. The differences between the first sub-
images corresponding to higher frequencies are minimal.
The sum of these eight shot gathers reconstruct the original
shot gather with a very small error (Figure 4).

Ground-roll attenuation

The weak reflections are invisible due to the interference
of the strong ground-roll noise (Figure 6A). Furthermore,
the waveforms of the shot gather are even truncated at
some places due to this high-amplitude ground-roll noise.
We can see that there is mostly the energy of ground-roll
noise within the frequency band from 1 to 10 Hz. The
energy of ground-roll noise and effective waves is also
obvious within the frequency band from 10 to 20 Hz. In the

Algorithm 1 Prediction error coefficients map

Require: S(ns): Entry trace (number of samples); Lw:
Window’s length;

1: Initialize Mp(ns) = 0.0; x(Lw) = 0.0; y(Lw) = 0.0;z(ns) =
0.0;

2: for i = 1,ns−Lw+1 do
3: x(1 : Lw)← S(i : i+Lw−1);
4: Compute c for x(Lw); Burg algorithms
5: y(1 : Lw)← c;
6: Mp(i : i+Lw−1)← Mp(i : i+Lw−1)+ y(Lw);
7: z(i : i+Lw−1)← z(i : i+Lw−1)+1;
8: end for
9: Mp( j)←Mp( j)/z( j); j = 1, . . . ,ns

10: return Map error Mp(ns)

Algorithm 2 Trace decomposition

Require: S(ns): Input trace (number of samples); Lw: long
window; N: level of decomposition;

1: initial DS(ns,N + 1) = 0.0; x(Lw) = 0.0; Y(Lw,N + 1) =
0.0; z(ns) = 0.0

2: for i = 1,ns−Lw+1 do
3: x← S(i : i+Lw−1);
4: Y← Compute window decomposition of x ;
5: DS(i : i+Lw−1, :)← DS(i : i+Lw−1, :)+Y;
6: z(i : i+Lw−1)← z(i : i+Lw−1)+1;
7: end for
8: DS← DS( j, :)← DS( j, :)/z( j); j = 1, . . . ,ns
9: return Decomposed trace DS(ns,N +1)
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Figure 2: Spectral analysis of the decomposition shot
gather with dipoles (1,c) e (c,−1) for N = 7.

frequency band above 20 Hz, there is mostly the energy of
the effective waves (Figure 2 and Figure 5).

By using the proposed decomposition method, the ground-
roll noise is successfully separated out from the shot signal
(Figure 3D). Observing the amplitude spectra generated by
decomposition (Figure 2), the sub-images S̃6 and S̃7 are
those that have greater low frequency content. Hence, a
good option to mitigate the GR is to reconstruct the signal
by adding the sub-images S̃0 to S̃5 (DB1c) or, likewise,
subtracting S̃6 and S̃7 from original shot.

To validate the results of this method there were
applied two chosen methods frequently used: trapezoidal
frequency bandpass filter ( f1 = 10, f2 = 20, f3 = 60, and
f4 = 70Hz are the corner frequencies) and f − k filtering.

Spectral analysis (Figure 5) shows the results of these
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Algorithm 3 Window decomposition

Require: x(Lw): Input (number of samples); N: level of
decomposition; a = 0: Weighting column.

1: initial X(N + 1,N + 1) = 0; X̃(N + 1,N + 1) = 0; Y(Lw+
N,N +1) = 0;

2: if ∑ |x|> 0 then
3: Compute c with Burg algorithm
4: X← X r

n = (1,c)∗(N−r) ∗ (c,−1)∗r r = 0,1, . . . ,N
5: λ ← α2 +β 2 ; α = 1 ; β = c
6: X−1← X/λ N

7: X̃← X̃(:, j)← X(:, j) ·X−1( j,a); j = 0,1, . . . ,N
8: Y← Y (:, j)← x∗ X̃(:, j); j = 0,1, . . . ,N
9: else

10: Y = 0.0
11: end if
12: return Decomposed window Y(Lw,N +1)

0 10 20 30 40 50 60 70 80 90 100 110 120
Frequency (Hz)

-100

0

A
m

p
lit

u
d
e
(d

B
)

__
Original

__
Recuperado

__
Erro

Figure 4: Spectral analysis of the shot gather and perfect
reconstruction results . The red line, the blue line, and
the black line denote spectra of original data, perfect
reconstruction and error, respectively. (Red and blue lines
are coincident). The amplitude is in logarithmic scale.

two compared methods. Band-pass filter eliminates the
low frequency component of the signal and since the
frequency bands of ground-roll noise and reflections are
overlapped, the effective waves energy has been seriously
damaged. The f −k filter still contains relatively (compared
to effective waves, 30 Hz) strong ground-roll noise in the
frequency band from 0 to 20 Hz, whereas the proposed
method (DB1c) has remove most of the ground-roll noise
conserving the effective waves energy and some fraction
of low frequency component.

All three methods provide ways to extract ground-roll,
but band-pass filter has significant decrease amplitude
drawback. f − k filtering causes serious distortion of
effective waves because the energy of ground-roll noise is
much stronger than that of reflections. We can conclude
that the results of the adaptive ground roll attenuation
method is the best among these (Figure 6).

Conclusions

Taking into account the properties of the binomial operator
it is possible to perform signal decomposition and
subsequent recovery at any level using binomials (1,c)
and (c,−1). This method’s filters showed superior results
in ground-roll attenuation compared with the filtering in
the frequency domain (1D), highlighting the conservation
of a fraction of the low frequencies necessary for further
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Figure 5: Spectral analysis of the shot gather and results of
all three filtering methods in 6. The red line, the blue line,
the green line, and the black line denote spectra of original
data, results after band-pass, f − k, and the proposed
method’s (DB1c) filtering, respectively. The amplitude is
in linear scale (above) and logarithmic scale (below).

processing of the signal.

As general characteristics of binomial filters one can
mention the following:

• The implementation of the bank of binomial
filters at any level allows perfect reconstruction
of seismograms;

• Any additional processing may be performed in any
of the sub-images, which makes the method very
versatile;

• The generation of adaptive binomial operator (filter)
only involves dipoles convolution and their use in
filtering of seismic data is considerably simple and
computationally efficient;

• The signal decomposition is performed trace by trace
which allows parallelization of the processing of very
large data volumes;

• The results of the ground-roll filtering illustrate the
applicability of binomial method in seismic data
processing;

• The algorithm is robust, easy to implement,
computationally efficient and requires less parameter
setting by the user.
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