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Abstract 

The application of seismic data regularization and 
interpolation methods is critical to many processing steps, 
such as noise suppression, wave equation based 
migration and modern inversion methods. The Anti-
Leakage Fourier Transform (ALFT) and Matching Pursuit 
(MP) regularization methods use an iterative procedure to 
calculate the spectrum of irregularly sampled data. The 
estimated spectrum is used to synthetize data at missing 
and new spatial positions. In this work these two methods 
are compared. Specifically, the implementation made by 
Jahanjooy et al. (2016) of the ALFT is compared to a 
simpler version of the MP method presented by Hollander 
et al. (2012). The 1D and 2D examples demonstrate the 
similarity of both methods in terms of results. An example 
of a 2D regularization of seismic data applied to the 
Marmousi data set clearly demonstrates that the MP 
algorithm is faster than the ALFT. 

Introduction 

In a real seismic survey the acquired data are often 
irregularly sampled in space due to many causes such as 
presence of valleys and rivers, equipment failures and 
acquisition costs. Interpolation and reconstruction method 
can be used to regularize irregular data. For this purpose 
one can adopt methods based on prediction error filtering 
(Naghizadeh and Sacchi, 2010), methods based on 
Fourier synthesis operators (Liu and Sacchi, 2004) or 
methods based on matrix completion (Naghizadeh and 
Sacchi, 2013).  

This paper concentrates on the comparison of two Fourier 
synthesis methods. More specifically, we will compare 
two greedy algorithms: AFLT (Xu et al., 2005) and MP 
(Mallat and Zhang, 1993). Both methods can interpolate 
data with irregular spatial attributes. They can also cope 
with aliasing by establishing strategies for wave-number 
selection (Schonewille et al., 2013). 

The Anti-Leakage Fourier Transform (ALFT) was 
developed by Xu el al. (2005). ALFT is an iterative 
algorithm and is slower compared to methods that use the 
Fast Fourier Transform (FFT) algorithm, since it 
calculates the Discrete Fourier Transform (DFT) in each 
iteration. However, a faster version that only calculates 
the DFT only once (Jahanjooy et al., 2016) could also be 
implemented. The ALFT method has been expanded to 
high dimensions (Xu el al., 2010). 

Another technique very similar to the ALFT is the 
Matching Pursuit (MP) interpolation, also called Matching 
Pursuit Fourier Interpolation (MPFI). These methods 
possess similar advantages and disadvantages. In our 
implementation, MP is slighter faster than ALFT as 
demonstrated by Nguyen and Winnett (2011).  

Different versions of MP interpolation have been 
proposed. For instance, Hollander et al. (2012) proposed 
an orthogonal version of the MP (OMP), which uses the 
least squares to fit all coefficients that were found at a 
given iteration. These authors also compare OMP to the  
ALFT. Schonewille et al. (2013) investigate the problem of 
interpolating aliased data via MP. They solved the 
problem of choosing the maximum energy Fourier 
coefficients from aliased events by using weights (or 
priors) derived from low frequency un-aliased data.  

In this work are presented results comparing ALFT and 
MP interpolation with 1D and 2D harmonic examples. 
Finally, we provide an example portraying reconstruction 
of 2D data using the Marmousi data set.  

Theory and Method 

Anti-Leakage Fourier Transform (ALFT) 

The ALFT objective is to estimate the Fourier coefficients 
of an irregularly sampled data (signal). Suppose that  the 
recorded time samples are on a regular grid, the Fast 
Fourier Transform (FFT) algorithm is recommended to 
transform the data from the time domain to the frequency 
domain. Since the grid is irregular in space, the non-
uniform DFT (Xu et al., 2005) is used to map data from 
space to wavenumber.  

Consider a 1D signal data with ܰ recorded samples in 
space ݔ = ሾݔଵ, ,ଶݔ ,ଷݔ . . . , ேݔ

ሿ. The ALFT technique 

retrieves the amplitudes at wavenumbers ݇ =
ሾ݇ଵ, ݇ଶ, ݇ଷ, . . . , ݇ேೖ

ሿ via  

1) Compute the weights ݓ(ݔ) and initialize all the 
Fourier components to zero. 

2) Compute the non-uniform Fourier components of 
the data using equation (1). 

መ݂௦(݇) =  ଶగ௫ି݁(ݔ)௦݂(ݔ)ݓ

ே

ୀଵ

             (1) 

3) Select the Fourier coefficient with the maximum 
energy and update data by subtracting the 
contribution of selected coefficient, equation (2), 
from the input data, equation (3). 

݂(ݔ) = መ݂
(݇)݁ଶగ௫                       (2) 

݂௦ାଵ(ݔ) = ݂௦(ݔ) − ݂(ݔ)                   (3) 
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a)                                                                                                      b) 

 

c)                                                                    d) 

 
e)              f) 

 

Figure 1 – 1D regularization example: (a) Desired data. (b) Decimated data. (c) MP data reconstruction. (d) ALFT data reconstruction. (e) MP 
absolute error. (f ) ALFT absolute error.                           

4) Repeat steps 2 and 3 until the updated residual 
input data to be less than a tolerance. 

5) Finally, use all the coefficients selected in the 
optimal Fourier spectrum to reconstruct the 
signal at any desired sampling points. 

For a more accurate calculation of the Fourier coefficients 
it is necessary to adopt weights. The regular and 
irregularly sampled data in the DFT summation need 
normalization by the weighting function ݓ(ݔ) where this 
is in function of the spatial distribution ݔ −  .ିଵݔ

Matching Pursuit (MP) 

The implementation of the MP and ALFT algorithms are 
very similar. The MP algorithm can be described as 
follows: 

Initialize all the Fourier components to zero. 

1) Compute the Fourier components of the data 
using equation (4). 

መ݂௦() =  ݂௦(࢞)݁ିଶగ࢞

ே

ୀଵ

                    (4) 

2) Select the Fourier coefficient with the maximum 
energy and update data by subtracting the 
contribution of selected coefficient, equation (5), 
from the input data, solving equation (6). 

݂(࢞) = ()ܿ መ݂


                  (5)࢞ଶగ݁()

݂௦ାଵ(࢞) = min
࢞

ฮ݂௦(࢞) − ݂(࢞)ฮ
ଶ

ଶ
        (6) 

3) Repeat steps 2 and 3 until the updated residual 

input data to be less than a tolerance. 
4) Finally, use all the coefficients selected in the 

optimal Fourier spectrum to reconstruct the 
signal at any desired sampling points. 

These weights ܿ() are the least squares solution 
between a synthetized harmonic and the residual  

()ܿ =
݂௦(࢞) ∙ ݂(࢞) 
݂(࢞) ∙ ݂(࢞) 

                       (7) 

As you can see in the algorithm above ܿ() is calculated 
on the flight.  

Numerical examples 

Figure 1 shows the MP and ALFT reconstructions of a 
randomly sampled 1D signal with two-harmonics: the 

function ݂(ݔ) = 3 cos ቀ
గ௫

ଵ
ቁ + 3 sin ቀ

గ௫

଼
+ 1ቁ. This function 

generates a signal for 128 frequencies as seen in Figure 
1(a). If only thirty (30) samples are available (as shown in 
Figure 1(b)), these can be used to calculate the 98 
missing positions of the desired signal. Figures 1(c) and 
(d) show the MP and ALFT reconstruction, respectively. 
Figures 1(e) and (f) show the reconstruction error by MP 
and ALFT in relation to the desired signal, respectively. 

The result is practically the same, but the number of 
iterations is different. The MP method has less iterations 
and is faster than ALFT. In the tests made it possible to 
conclude that the less samples, the greater the difference 
between the methods. An important feature of the MP 
method observed in this example is that it remains stable, 
maintaining the number of iterations even when the input 
data is very scarce.  
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a)                                                                                                      b)                       

                                           

c)                                                                    d) 

                                  

e)              f) 

                                    

Figure 2 – 2D regularization example: (a) Desired data. (b) Decimated data. (c) MP data reconstruction. (d) ALFT data reconstruction. (e) MP 
absolute error. (f ) ALFT absolute error. 

Another example for a better understanding of the 
methods in high dimensions is through a two-dimensional 
function. 

,ݔ)݂ (ݕ =
1
2


cos ߨ2 ሾ(3ݔ + (ݕ2 + ݔ2) + ሿ(ݕ3

+ sin ݔ)ߨ4 + (ݕ
൨         (8) 

Equation (8) generates a function distributed in a spacial 
grid with (128x64) positions in x and y, respectively 
(Figure 2(a)). As in case 1D, the input data were 
randomly decimated, leaving a data matrix of (54x36) 
positions in x and y, Figure 2(b). In other words, it will be 
necessary to apply the reconstruction in both directions (x 
and y) to obtain the (128x64) positions in the desired 

data. In Figures 2(c) and (d) are presented the MP and 
ALFT data reconstructions, respectively. In Figures 2(e) 
and (f) are presented the MP and ALFT difference to the 
desired data or absolute error, respectively. 

It is very difficult to perceive difference in the results, 
Figures 2(c) and (d), even comparing the errors, Figures 
2(e) and (f). Again, the number of iterations are different 
and in most runs, the MP method has fewer iterations and 
is faster than ALFT. 

Application in synthetic seismic data  

In order to demonstrate the ability of the MP and ALFT to 
reconstruct in two spatial dimensions, we applied both 
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a)                                                                                                      b)  

              
c)                                                                    d) 

                    

Figure 3 – 2D regularization result: (a) Desired data. (b) Decimated data. (c) MP data reconstruction. (d) ALFT data reconstruction. 

 

methods to a subset of the Marmousi synthetic data. The 
regularization was done using spatial coordinates shot-
receiver, but could be applied also midpoint-offset. The 
input data subset has 10 shots, interval 100 to 109 in full 
data, with 96 traces per shot, so it has a total of 960 
traces (Figure 3(a) present shots 103 to 105). The offsets 
in each shot vary from 200 to 2575 with an interval of 
25m. This data subset was decimated randomly, 
removing some shots on the data and some traces in 
each shot, resulting in a data with 8 shots and a total of 
580 traces, as shown Figure 3(b) the same shots in the 
Figure 3(a). 

In the Figures 3(c) and (d) are presented the results of the 
MP and ALFT reconstructions, for the same shots as in 
the Figure 3(a), respectively. For a better reconstruction 
in the f-k1-k2 domain it was applied an NMO correction in 
the input data and then the inverse NMO in output data. 
This is necessary to improve the ability to reconstruct 
hyperbolic events. 

Both algorithms are still being optimized; it is not possible 
to make a fair comparison between computational times. 
But, as has been said in previous sessions, the MP 
method has its weights calculated on the flight and offers 
a better estimate of the Fourier coefficients, which entails 
in fewer iterations and a better performance than the 
ALFT. 

Conclusions 

As shown in previous in this work and in the referred 
papers, the Matching Pursuit (MP) and Anti-Leakage 
Fourier Transform (ALFT) methods are efficient for 
seismic data reconstruction, and handles very steep dip 
events and non-uniform datasets. However, they have a 
high computational cost, especially the ALFT algorithm. 

Were compared the MP and ALFT using simple functions 
in 1D and 2D. As expected, both methods present fairly 
similar results. The application in synthetic seismic data 
also shows that both methods reconstructed very well the 
decimated data, and no significant differences were 
observed in the results. 

The results presented here are preliminary; we will 
optimize the MP and ALFT algorithms aiming to reduce 
the computational time. We will evaluate the performance 
of both methods by applying to real 2D land dataset of the 
Parnaiba basin, Brazil. 
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