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Abstract

The main purpose in the present work is the
comparison of some methods that can be applied for
a time-frequency map distribution of seismic data, that
is typically a multi-sensor technique. The generalized
data attribute analysis is potentially a data-driven
methodology to complement geological information
for interpretation purpose. A seismic signal carries
the information from the subsurface, and the goal is
the oil and gas exploration in a porous and fractured
medium. The propagating signal samples the geology
by the transmission and reflection seismic fields, and
the characteristics of the medium is present in the data
under geometric and frequency properties. And the
important principle underlying the t − f decomposition
is that an arbitrary signal is caused by a linear
superposition of elementary wavelets, but goes further
to an atomic decomposition, in the sense that of “well”
localization in time and frequency.

Introduction

This work has for objective compare five time-frequency
local spectral estimations to analyze the evolution as a
possible measure of attributes characterization of a seismic
trace, and for this we used a synthetic model where we
can have control to configure the evolution and information
localization. It has been published that time-frequency
analysis as a temptative to characterize a subsurface
geological model aiming oil and gas exploration, where the
wave propagates in porous and fractured media.

Would it be possible to differentiate between geology
formed of thin layers, thick layers, mixed layers, periodical
stratigraphical environments using time-frequency
attributes? Also, would it be possible to follow these
environments throughout a basin? Besides that, would
it be possible to detect and follow stratigraphical and
structural formations and events, and paleovalleys? These
are very important geological features, and the energy
applied to geometrical attributes research development
are aimed at these questions. Therefore, complementary
forces have to be applied into the time-frequency studies.

Several models for attribute measures have been proposed
with this aim in the core of the oil industry, and they be
classified in general as spectral and geometrical methods,
as described by Chopra and Marfurt (2012). It is fascinating
that time-frequency attributes are well developed and

applied in the medical and biological area (Boashash,
2003). Besides, this area of research has received lots of
attention, what we can commemorate with Cohen (1995)
as a reference bank of information.

The synthetic model obeyed the superposition principle,
where the trace s(t;x), at a certain distance from the source
x, is represented by:

s(t) =
n=M

∑
n=1

wn(t)∗Rn(t;x)+ rn(t;x), (1)

where w(t) is the effective propagating source pulse (a
form of wavelet), R(t;x) is the path reflectivity, and rn(t;x)
the local additive noise. The physical model is described
by a propagating vertical propagating plane wave front,
over a set of homogeneous, isotropic, horizontal layers,
over a half-space in the bottom, and a half-space on
the top represented by the air. The governing equation
corresponds to a similar case to the acoustic wave
propagation.

The analysis applied to a single t-trace produces on t − f -
map; therefore, for a complete t − x-seismic section (2D
survey), the result will be a volume (attribute cube), where
the objective is to follow the attribute pattern inside the
profile. To be more specific, different sections can be cut
through the attribute cube as desired for the interpretation.
In case of a 3D survey, a multidimensional cube is
produced.

Methodology

The transforms applied are resumed to the title Short-
Time Fourier Transform (STFT), and the ones chosen for
this study are briefly described in the sequel. Pretty
much in all cases, the transform interpretation is that of a
moving symmetric window over the trace, and the obtained
information placed with respect to its center. It is important
to emphasize that numerical methods participate in this
kind of study in a very strong presence. The different
transforms (distributions) used have been combined in
a group called Cohen Class (Flandrin, 1999; Boashash,
2003).

Hilbert Transform

The first part corresponds of attribute analysis naturally
goes to the of the infinite Cauchy-type principle value
transform, that is defined for a single domain for tow
complex functions ϕ and ψ as:

ψ(t) =
1

iπ

∫ +∞

−∞

ϕ(τ)

t − τ
dτ, ϕ(t) =

1

iπ

∫ +∞

−∞

ψ(τ)

t − τ
dτ. (2)
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The real (Rψ, Rϕ) and imaginary (Iψ, Iϕ) parts of ϕ and ψ
are related to each other as (Zhdanov, 1988):

Rψ(t) =
1

iπ

+∞
∫

−∞

Iϕ(τ)

t − τ
dτ, Iϕ(t) =− 1

iπ

+∞
∫

−∞

Rψ(τ)

t − τ
dτ. (3)

Rϕ(t) =
1

iπ

+∞
∫

−∞

Iψ(τ)

t − τ
dτ, Iψ(t) =− 1

iπ

+∞
∫

−∞

Rϕ(τ)

t − τ
dτ. (4)

called Hilbert transform H{.} pairs, and also directly related
to causal signals (Mesko, 1984). For the trace s(t), the
objective is to have a form of measuring the instantaneous
amplitude (IA), phase (IP) and frequency (IF), of the time
series. The pair of H{s(t)}, in the time domain, is related
to the Fourier transform F{.} in the following form (Leite,
2015):

F{H{s(t)}}( f ) = σc( f )F{s(t)}( f ) (5)

where σc is the sign function in the complex domain
expressed as,

σc( f ) =











+i, for f < 0, i =
√
−1

0, for f = 0

−i, for f > 0

(6)

The analytic signal is defined by the following composition:

z(t) = s(t)+ isH(t) = a(t)eiφ(t), (7)

from where a(t) is called the instantaneous amplitude (or
the envelope), and φ(t) the instantaneous phase with this
physical meaning, and given respectively by,

f (t) =
1

2π

dφ(t)

dt
and φ(t) = tan−1

[

sH(t)

s(t)

]

. (8)

An important property of the analytical signal is of doubling
the Nyquist frequency.

The Spectrogram

The STFT of a signal s(t) by a moving window by w(t),
which is not related to the signal and arbitrary, is expressed
as a time truncation in the Fourier symmetrical direct
transform as (Goswami and Chan, 2011):

STT(t, f ) =
1√
2π

∫ +∞

−∞
e−i2π f τ s(τ)w(τ − t)dτ =W ( f )⊗S∗( f ),

(9)
where t denote the time position of the moving window,
w(t), for the spectral localization of the dominant Fourier
frequency component along the trace. The transform
results in a correlation in the spectral domain between
W ( f ) and S( f ), that can represent limitations, and can
usually be analyzed with numerical experiments for the
case of any function (signal).

The spectrogram is defined by the power spectrum
(modulus squared), and serves as reference for the other
STFT and distributions; i. e.:

Ss(t, f ) =

∣

∣

∣

∣

1√
2π

∫ +∞

−∞
e−i2π f τ s(τ)w(τ − t)dτ

∣

∣

∣

∣

2

, (10)

that corresponds to a quadratic operation (external) where
the phase information is not considered.

Trapezoidal-Triangular Transform

The Trapezoidal window can be expressed as:

w(t) =











1, |t| ≤ T1−T2

2

− |t|
T2
+ T1+T2

2T2
, T1−T2

2
< |t|< T1+T2

2

0, |t| ≥ T1+T2

2

(11)

for a normalized length 0−1, and internal corners at T1 and
T2. When T1 = T2, it must reduce to the case of a Triangular
window given simply by:

w(t) =

{

1−| t
T |, |t|< T

0, |t|> T
(12)

Gabor Transform

This transform, GT, uses the Gaussian (bell-shape) window
function, which is given by:

w(t) =
1

σ
√

2
e
− t2

2σ2 , (σ > 0), (13)

that has the important property of recovering the
information at the center point (Leite, 2015), with
applications in surface wave dispersion measurement.

Stockwell Transform

This transform, ST, has been communicated by Stockwell
et al. (1996), that is formed by two compensating parts;
one factor that amplifies with increasing f , and another that
smooths out around the central point t, expressed in the
symmetric form by:

SS(t, f ) =
1√
2π

∫ +∞

−∞
e−i2π f τ h(τ)| f |e− 1

2
(τ−t)2 f 2

dτ. (14)

Wigner Transform

This transform (also called Wigner-Ville transform or
distribution, ), WT, is an another rather special distribution
reference, described by Cohen (1995), and applications
given by Boashash (2003). It is written in the form:

SW(t, f ) =
1√
2π

∫ +∞

−∞
e−i2π f τ s

(

t +
τ

2

)

s∗
(

t − τ

2

)

dτ (15)

which displays a form of mirror-image local correlation
function exhibited by the complex conjugate (∗) of s(t), to
form a t − τ map:

Css(t,τ) = s
(

t +
τ

2

)

s∗
(

t − τ

2

)

, (16)

As a result, the integrand corresponds to a quadratic
operation (internal), which is similar to the spectrogram
(external quadrature), but essentially different because it
does not require a window in this definition. In the spectral
domain, it can be written as,

SW(t, f ) = Fτ{Css(t,τ)}. (17)

The Pseudo-Wigner transform, PWT, Cohen (1995),
follows as a version of the windowed WT, to emphasize
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the information more around the local time, t, what is
expressed by a truncation window h(τ):

SPW(t, f ) =
1√
2π

∫ +∞

−∞
e−i2π f τ h(τ)s

(

t +
τ

2

)

s∗
(

t − τ

2

)

dτ. (18)

In the experiments, the applied h(τ) was the Hamming
window, as an option; but other functions can be equally
tested as, for instance, the attractive Gabor window.

Choi-Williams Transform

This transform, CWT, is another special concept similar to
the WV, described by Cohen (1995), with applications given
by Flandrin (1999), and written in the following form:

SCW(t, f ) =
√

2
π

∫ ∫

e−i2π f τ σ
|τ|e

−2σ 2 (ς−t)2

τ2 s
(

ς + τ
2

)

s∗
(

ς − τ
2

)

dςdτ

(19)
where there is a window applied to the internal quadratic
expression, for truncation and amplification with τ,

CCW(t,τ) =
1

|τ|e
−2σ 2 (ς−t)2

τ2 s
(

ς +
τ

2

)

s∗
(

ς − τ

2

)

. (20)

As a result, which is similar to the spectrogram, but
essentially different where the integrand corresponds to a
quadratic operation (internal). In the spectral domain can
be simplified to

SCW(t, f ) = Fτ{CCW(t,τ)}. (21)

A non-desired property of the WV and CW distribution is
due to crossing terms.

Cross Terms

An important part of the analysis in the general Cohen
Class is the presence of cross terms that make the
transform rather complex, and as a resume of this is to
look at the the WT of (1), where the observed signal
is constructed by the sum of several atom contributions
(Cohen, 1995), simplified to a simpler case without the
presence of the noise term, and considering the total signal
as the contribution of atom components, as expressed by:

sT(t) =
n=M

∑
n=1

wn(t)∗Rn(t;x) =
n=M

∑
n=1

ansn(t;x). (22)

Inserting in the WT, the result is given by the expression:

SWT(t, f ) =
n=M

∑
n=1

|an|2SWn(t, f )+ IMn (t, f ), (23)

where the interference term, IMn , is given by

IMn (t, f ) = 2

n=M−1

∑
n=1

n=M

∑
k=n+1

R{ana∗kSWn(t, f )}, (24)

that shows that the WT contains M(M − 1)/2 additional
terms for a signal composed of M individual contributions,
that result from the bilinear structure. In expression (23),
the real term R{ana∗kSWn(t, f )} corresponds to a modulation
due to the presence of the cosine function.

To visualize better, the specific case of only two
components,

s(t) = s1(t)+ s2(t), (25)

since by symmetry, S12 = S∗
21

, and S12 +S21 = 2R{S12}, the
result is simplified to:

S(t, f ) = S11(t, f )+S22(t, f )+2R{S12}. (26)

And for a classical illustrative example, the signal
composed by two complex exponentials:

s(t) = A1ei2π f1t +A2ei2π f2t , (27)

that has for result,

S(t, f ) = A2
1δ ( f − f1)+A2

2δ ( f − f2)

+2A1A2δ ( f − f1 + f2

2
)cos[( f1 + f2)t] (28)

that shows concentrations at f = f1 and f = f2 in the main
term, and also some information at the average frequency

f = f1+ f2

2
from the interference term. That is an important

point in data processing involving t − f analysis.

The variants to the WV transform also present the cross
terms, and the ones with applied windows (smoothing and
amplification) are attempts to attenuate the cross term
effects, but also attenuates the main information.

Results

The strategy applied for the comparison of the time-
frequency adapted distributions followed the original work
of Steeghs and Drijkoningen (1995), where several models
were considered corresponding to geological situations. In
all cases, first the models were considered without noise,
and then different levels of noise were imposed. The
cases modeled sedimentary basins, where the velocity
distribution varied slowly with depth based on empirical
models, with the layers imposing randomness. Figure
1 shows the adopted data model for exemplification,
that was obtained from the open data set from Keys
and Foster (1998). The Matlab (www.mathworks.com),
and associated (see Octave, www.gnu.org), and other
individual contributions are present in the web covering
some of these computer developments (Chopra and
Marfurt, 2012).

Figure 2 shows the Ricker wavelet with dominant frequency
of 25 Hz (index number n = 64), used in the modeling
shown examples.
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Figure 1: Geological Model given in three parts.
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Figure 2: Ricker wavelet.

Figure 3 shows the desired products from the Hilbert
transform and the analytic trace without noise, displaying
the trace with the superposed envelope, followed by
the instantaneous frequency (IF) and phase (IP). We
intentionally left the numerical noise present in the IF, due
to the computation of the derivatives over the IP curve, as
one can see, and calculated by formulas 8.
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Figure 3: Hilbert transform and attributes. (a) Seismic trace
and instantaneous amplitude. (b) Instantaneous frequency.
(c) Instantaneous phase.

Figure 4 show the t− f maps for the Triangular, Trapezoidal,
Gabor and Stockwell window, with the respective Fourier
transforms, for the case of noiseless trace, where we can
observe the similar evolution in the spectrum. The width
of the applied windows corresponded to the length of the
used Ricker pulse.

Figure 4: (a) Seismic trace. Windows and Fourier
transform: (b) Triangular. (c) Trapezoidal. (d) Gabor. (e)
Stockwell.

Figure 5 shows the maps for the Wigner-Ville and
Pseudo Wigner-Ville correlation distributions (t − τ), and
the respective Fourier transforms (t − f ) for the noiseless
trace, where the effect of the weighting Hamming window
applied is very clear for attenuating the artifacts (crossing
terms).

Time index
Time index

Figure 5: (a) Seismic trace without noise. Distributions: (b)
Correlation map of the Wigner-Ville. (c) Wigner-Ville. (d)
Correlation map of the Pseudo Wigner-Ville. (e) Pseudo
Wigner-Ville.

Figure 6 shows the maps for the Choi-Williams correlation
distribution (t − τ) and the Fourier transform (t − f ) for the
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noiseless trace. It is clear how some distributions can be
compared to the Pseudo Wigner-Ville and plain Wigner-
Ville transforms, but stronger in localizing frequencies.

Time index

Figure 6: (a) Seismic trace without noise. Distributions: (b)
Correlation map of the Choi-Williams. (c) Choi-Williams.

Figure 7 shows the products of the Hilbert transform and
analytic trace with noise, displaying the trace with the
superposed envelope, followed by the IF and IP curves.
Again, we show an example where the numerical noise is
strongly present in the IF, due to the computation of the
derivatives over the IP curve, and calculated by formulas
8. The IF curve shows a very complex (noise) pattern; in
the other hand, the IP curve still looks well behaved, and
potentially useful.

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2
Instantaneous amplitude

Trace

Envelope

0 100 200 300 400 500 600

-0.5

0

0.5

F
re

q
u
e
n
c
y
 i
n
d
e
x

Instantaneous frequency

0 100 200 300 400 500 600

Time index

0

200

400

600

800

A
n
g
le

 (
ra

d
)

Instantaneous phase

Figure 7: Hilbert transform and attributes. (a) Seismic trace
with noise and instantaneous amplitude. (b) Instantaneous
frequency. (c) Instantaneous phase.

Figure 8 show the t− f maps for the Triangular, Trapezoidal,
Gabor and Stockwell window and respective Fourier
transforms, for the case of noisy trace, where we can see
that it is more complex than for figure 4, and not much
difference in the spectral evolution, with small details.The
width of the applied windows correspond to the length of
the propagating pulse.

Time index

Figure 8: (a) Seismic trace with noise. Windows and
Fourier transform: (b) Triangular. (c) Trapezoidal. (d)
Gabor. (e) Stockwell.

Figure 9 shows the maps for the Wigner-Ville and
Pseudo Wigner-Ville correlation distributions (t − τ) and
their respective Fourier transforms (t − f ) for the noisy
trace, where the effect of the weighting Hamming function
is very clear is attenuating the artifacts (crossing terms).

ime index

Figure 9: (a) Seismic trace with noise. Distributions: (b)
Correlation map of the Wigner-Ville. (c) Wigner-Ville. (d)
Correlation map of the Pseudo Wigner-Ville. (e) Pseudo
Wigner-Ville.

Figure 10 shows the maps for the Choi-Williams correlation
distribution (t − τ) and the Fourier transform (t − f ) for the
noisy trace.It is also clear how the distribution can be
compared to the Pseudo Wigner-Ville and plain Wigner-
Ville transforms in localizing frequencies, but now the
details are very sharp due to the applied exponential
window.
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ime index

Figure 10: (a) Seismic trace with noise. Distributions: (b)
Correlation map of the Choi-Williams. (c) Choi-Williams.

Conclusions

The Hilbert transform and analytical signal can impose a
very complex and noisy IF curve, but the IA and IP are
rather smooth and useful.

In order to establish the capability of the short-time and
quadrature distributions in detecting the spectral evolution,
it is clear that it is necessary to first classify the signal
trace with respect to message and noise components. And
also to have the goals very clear, due to the fact of many
possibilities present in the Cohen class.

Numerical experiments and theorectical models are
important for obtaining results that can have practical use
in characterizing structures in the subsurface.

It is necessary a proper parametrization of the maps for
being able to see details of the different t − f methods,
but has not been the case here to choose the best
representation. But we can emphasize that the presence of
a truncating window, t − τ, on the Wigner-Ville quadrature
principle can be very attractive for localizing frequencies in
a data processed cube.

The attractive Wigner-Ville transform call for more
attention, and naturally further research work must be
oriented towards analyzing and masking (filtering) the
interference terms (considered as artifacts).
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