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Abstract

Computational efficiency can be greatly improved from pre-
liminary mathematical developments capable of, for exam-
ple, saving the processing time required in performing nu-
merical calculations present in geophysical studies. Here,
we present some well-known numerical methodologies (oth-
ers not so much) applied in different areas of geophysics,
such as: seismic, gravimetry and geothermal. A more in-
depth mathematical study of a geophysical problem allows
the construction and intelligent use of numerical methods
capable of exploring shortcuts that capable of exploring
shortcuts that are invisible to the computational use of brute
force type. This allows the potentially optimized applica-
tion of the computational resources available to approach
the considered geophysical problem. In many sciences, in-
cluding geophysics, to solve a problem consist in analysis,
model proposing, and then solve the problem based on such
model. This last part, generally the whole process involve
some complicated relations, things that would be kind of
hard to solve with a calculator and a pencil, and it is where
numerical methods come in. They are algorithms that, step
by step, solve problems like: find zeros of functions of sev-
eral types, solve linear systems of big size, integrate and
take derivatives of a huge number of functions, and they are
widely applicable in a great part of geophysics.

1 Introduction

A great matter that is often left aside in the courses of
geophysics and mathematics is how the computer solve nu-
merical problems, because as far the calculus class teaches,
it’s made analytically. Many scientists, in turn the geophysi-
cist, must know how to analyze problems, create models,
and then solve them, however this last part, in most of the
problems of the science, is just solvable numerically.

The computer is a powerful tool, but in essence only accept
orders in a quite directed way, step by step, called algorithm.
So, the numerical methods create algorithms in order to

solve problems. Since, this article got as objective expose
some of that methods with examples of application in the
geophysical situations.

2 Theory

The following topics in this section are three numerical meth-
ods: Gauss-Newton, Gauss elimination, and Monte Carlo;
giving emphasis to the intuitive idea and applications exam-
ples instead of the algorithm itself.

2.1 Gauss-Newton’s method to find zero of functions

Find zeros of functions is, in general, one of the first subjects
to be study in numerical analysis, given the simplicity of the
methods, besides the solving impossibility of analytical prob-
lems involving high degree polynomial equations. This was
proved by the great young mathematician Évariste Galois,
that determined the necessary and sufficient conditions to
find the roots analytically, and started a study of numerical
resolution of equations. There are some methods to find
the zeros of functions, like the bisection, secant, Muller, but
Gauss-Newton is without doubts the fastest among all; with
order of convergence ρ = 2, while the secant method got
ρ = 1.618 and the bisection only has ρ = 0.5 (Atkinson,
1988). In practice this means that it is possible to calculate
with a desirable precision, the root of a function only with
paper, pen and a pocket calculator (and sometimes not even
that).

What the Gauss-Newton’s method proposes is that would be
given a certain value that counts as an initial solution, then
find the tangent line of the function at that value, and find the
root of it, repeating that process until the difference between
two consecutive values is less than the error proposed, or
until reach a maximum number of repetitions. This process
is illustrated at the Figure 1. The equation of the tangent line
is an linear approximation of the function, which is nothing
more than a first order Taylor polynomial. That can be written
as follows:

T (x) = f(x0) + f ′(x0)(x− x0). (1)

Being x0 the point which the tangent line refers to. So the
root of that line look like this:

x = x0 −
f(x0)

f ′(x0)
. (2)

Well, as will this procedure is repeated a lot of times, the

Fifteenth International Congress of the Brazilian Geophysical Society



Numerical developments applied to geophysics 2

Figure 1: Illustration of the Gauss-Newton‘s Method
(Dawkins)

formula for each iteration looks as follow:

xk+1 = xk −
f(xk)

f ′(xk)
. (3)

Despite the fast convergence, to ensure it some conditions
must be taken into account, such as: the initial value is sup-
posed to be close to the desirable solution, so it is good to
have an interval that is certain to contain a solution. This can
be assured in a interval I =]a, b[ if the following statement
is true:

f(a) · f(b) < 0. (4)

Also, it is necessary to have an analytic equation of the
derivative of the function.

This problem can be solved using the secant method, but in
this one is not treated in this paper.

2.2 Gaussian Elimination

Gaussian elimination is a method to solve well behaved
linear system, whether it is homogeneous or not; but it is
essential to solve a lot of problems involving matrices, like
matrix inversion, find determinants, obtain dimension of the
space spanned by the columns vectors, calculate eigenval-
ues and eigenvectors. In this subsection it is presented the
algorithm of gaussian elimination with a little bit of theory
behind, and ways to decrease the numerical error, as well
how to find determinant using this method. The whole point
of the Gaussian elimination is to obtain a row equivalent
matrix, in other words the space spanned by the row vectors
are the same by isomorphism. From the matrix point of view,
it is intended to obtain an upper triangular matrix, but for it
works there are only permited to operate rows multiplying,
subtracting and permuting. Supposing an matrix A = (aij)
with dimension n× n :

Do this process for 1 6 k 6 n− 1
If akk 6= 0 then:

Do the below process for every

row index i > k
mik = aik

akk

Li = Li −mikLk
end do

end if

end do

Where Li is the i-th row of the matrix and akk are the pivots.
The terms mik are the row multipliers, and there is a reason
why they got row and column indexes attached to it. The
next sub-section shows how the system is solved.

2.3 Linear systems

The described algorithm can be used to solve linear system
of this shape:

Ax = b. (5)

Being A the coefficient matrix of dimension n × n, b the
term independent vector of dimension n, and x the unknown
vector. By doing the same operations of the Gaussian elimi-
nation on both A and b, what is obtained is an equivalent
linear system Ux = g of the shape:

u11 · · · u1n

0
. . .

...
...
0 · · · unn



x1
...

xn

 =


g1
...

gn

 . (6)

As U is upper triangular, it is easy to find a solution vector,
because it is only necessary to do back substitution as
follows:

xn =
gn
unn

(7)

and

xk =
1

ukk
[gk −

n∑
j=k+1

ukjxj ] (8)

where k = n− 1, n− 2, · · · , 1 .

2.4 LU decomposition

A lot of modeling problems in geophysics have the same
structure of linear systems, but in that case, the matrix A,
generally, is composed of geometric quantities, and the
vector b the observed data (such as travel time of the seis-
mic waves), and x the parameters of the subsurface model
(such as P-wave velocity and layer thickness). However,
in realistic life problems, the same matrix A is applied to
various bk, so it is interesting to store the values of the row
multipliers mik somewhere. Suppose you store them in an
lower triangular matrix of the following shape:

L =


1 0 · · · 0

m21 1
...

...
. . . 0

mn1 mn2 · · · 1

 , (9)

and with that, it is possible to do the same Gaussian elimina-
tion. calculations on the new vector, but with the same row
multipliers, saving computer power. The best option though
is to store those row multiplyers below the diagonal of the
A matrix, because it will save RAM memory since there
only got zeros and not going to be used. The A with n× n
dimension should be as follows:
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A =



a11 a12 · · · a1n

m21 a22
...

...
. . .

a(n−1)n a(n−1)n

mn1 mn2 · · · mn(n−1) ann

 , (10)

One interesting property of this matrix L is that

A = L×U . (11)

This property is due a certain theorem and the proof for it
can be found at Atkinson (1988). Despite of that, it is pretty
important, mostly when the determinant operator is applied
to both sides of the equation:

detA = detL× detU , (12)

and as detL = 1, because it is an lower triangular matrix
with all the terms in the diagonal equals to one:

detA = detU . (13)

Therefore the determinant of A can be obtained by the
product of the terms on the diagonal of U .

2.5 Pivoting and Scaling

Although being useful, the pure Gaussian elimination algo-
rithm have a lot of failures. First of all, if the pivot is equal to
zero, the row multiplier is impossible to be found (division
by zero). Besides that, applying this method on a big linear
system, the number of arithmetic operations becomes an
great source of numerical error. One of the reasons is be-
cause the computer works in binary base, the calculations
are made in that base, so it is necessary to convert from
decimal to binary, and then convert the result from binary to
decimal; generating error (Lopes and Ruggiero, 1988).

To deal with that problem a lot of techniques had arisen,
such as pivoting and scaling. Pivoting is nothing more than
permuting rows and columns to select an specific pivot, and
scaling is multiplying the terms of a row for a given value.

Partial pivoting just permute rows, to obtain a bigger pivot,
preventing error. The criteria for that is to use a bigger
number in the column (k) being operated, so the term that
row multipliers becomes smaller. In an mathematical way:

ck = max |aik|, (14)

being ck the pivot to the column k, therefore the row of the
pivot and the k row are swapped, and the for optimizing
even more, it is good to store the index of the pivot row, so it
becomes possible do the same permutations when applying
the Gaussian elimination in the independent term vector b.

Implicit scaling is an simple trick to make partial pivoting
more efficient, only changing the criteria for swapping. To
reach that criteria, first is necessary to define a vector with

the biggest numbers of each row:

si = max |aij | for j = 1, · · · , n; (15)

with i = 1, · · · , n. Then the pivot will be the number in the
column with the bigger relation between his value and the
bigger term at his row. In an mathematical way:

ck = max

∣∣∣∣aiksi
∣∣∣∣ . (16)

2.6 Monte Carlo for integration

The Monte Carlo method is one of the many stochastic ones,
on which are generated pseudo random number to obtain
numerical results. It is useful to study the behavior of atomic
particles, simulating their movement from the principle that
they move in an random way. Also, it is useful to calculate
the digits of the number π and compute areas, besides
compose a relatively simple code.

To calculate the area of one quadrant of an circle of radius
r, it is possible to apply the formula for the whole circle,
and divide by four, so we have area = π

4
r2. However, if this

quadrant is put inside an square of side length equals r,
becomes possible to shot a lot of random numbers to x and
y axis. An illustration is shown at Figure 2

Figure 2: Computing area with Monte Carlo (Cedric, 2013)

Since random numbers generally have a continuous prob-
ability distribution on all square, the relation between the
numbers of points inside the circle quadrant (nc) and those
that belongs to the whole square (nq) is given by:

nc
nq

=
C

Q
, (17)

being C the circle quadrant area, and Q is the square area.
So isolating the C we have.

C = r2
nc
nq
. (18)

In that way, it is possible to calculate the area of the circle
multiplying C by four. If the analytic expression for the area
were applied would be possible to calculate π.

It is easy to make an relation between the definite integral
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and area calculations, because to a certain extent is the
same thing. That said, it is possible to compute the integral
by defining the max f(x) for a 6 x 6 b, being a and b the
limits of integration; and then apply the Monte Carlo in the
plane, however there is an alternative approach to that prob-
lem. One of the implications of the Mean Value Theorem
is that the definite integral

∫ b
a
f(x)dx is determined by the

mean value of f(x) at the interval a 6 x 6 b (Gould et al.,
1996). That way is possible to calculate an approximation
to the average picking n values of f(xi) with xi being a
sequence of random numbers inside the interval. Like this
the integral can be defined as follows:∫ b

a

f(x)dx ≈ (b− a)
1

n

n∑
i=1

f(xi). (19)

At lower dimensions, other methods like Simpson’s Rule,
rectangular and trapezoidal approximation are more precise;
but at multidimensional integral Monte Carlo is the most
efficient method, (Gould et al., 1996).

3 Examples of application at geophysics

This section shows three examples of applications of the
numerical methods seen above in different fields of geo-
physics.

3.1 Geothermal gradient modeling

Suppose there is an model described at Figure 3.

Figure 3: Geothermal prospecting model

In this model are placed temperature Ti at the depths zi for
i = 1, · · · , n. Suppose that theoretically after studying the
data, statistically the geothermal gradient at the region is
given by the following expression:

T (z) = a+ bz + cz2 + dz3 + ez4 + fz5 (20)

Then, what remains for the model to be complete is to
determine the coefficients a, b, c, e and f . To have this, is

necessary to solve the following linear system:

T1 = T (z1) = a+ bz1 + cz21 + dz31 + ez41 + fz51

T2 = T (z2) = a+ bz2 + cz22 + dz32 + ez42 + fz52

T3 = T (z3) = a+ bz3 + cz23 + dz33 + ez43 + fz53

...

Tn = T (z) = a+ bzn + cz2n + dz3n + ez4n + fz5n

(21)

The way is presented, the linear system have more equa-
tions than variables, and in that case there is two options:
Apply the least square method to optimize (and approximate
the linear system to one with six equations), or to curtail
the excess of equations. Each one of then gives an linear
system of the following matrix view point:

1 z1 z21 · · · z51
1 z2 z22 · · · z52
...

...
...

. . .
...

1 zn z2n · · · z5n



a
b
...
f

 =


T1

T2

...
Tn

 (22)

which is an linear system solvable by Gaussian elimination
needing a minimum of six measurements.

3.2 Travel time in a curved reflecting interface

Suppose an model on which a layer of homogeneous seis-
mic velocity V , that at the lower boundary has an reflecting
curved interface, that is described by the function h(x), as
shown at Figure 4.

Figure 4: Isotropic layer model with an curved reflecting
interface (Figueiró, 1994)

Being S the source position, and R the seismic receiver.
The travel time is given by the following expression:

t(S,R) =
h(ξ)

V

[
1

cos(α− φ)
+

1

cos(α+ φ)

]
, (23)

where:

α− φ = arctan

(
ξ − S
h(ξ)

)
, (24)
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α+ φ = arctan

(
R− ξ
h(ξ)

)
, (25)

φ = arctan

[
dh

dx
(ξ)

]
, (26)

Subtracting the Eq.(24) by the (25) and replacing φ with the
Eq.(26), we have:

2 arctan

[
dh

dx
(ξ)

]
− arctan

(
R− ξ
h(ξ)

)
+ arctan

(
ξ − S
h(ξ)

)
= 0. (27)

Then, it becomes a problem of finding the zero of Eq.(27),
(f(ξ) = 0), so that way ξ is found, so φ and α are found
by Eq.(26) and (24). That way the problem can be solved
with the Gauss-Newton’s method. The demonstration of the
above equations can be found in Figueiró (1994).

3.3 Gravimetric model for multiple spheres

Suppose a model that have ten spheres, each one defined
by: ri, xci, zci, ρi; being respectively the sphere radius,
horizontal coordinate of the center of sphere, the vertical
one and the density. In field is measured the gravitational
anomaly of the spheres (gobs), caused by a buried hetero-
geneous body, that is supposed to be represented by the
union of such ten sphere. Then, for direct modeling, the
gravimetric anomaly caused by such body given by:

gcalc(x) =
4

3
Gπ

10∑
i=1

(ρi − ρo)zci r3i
[z2ci + (x− xci)2]

3
2

. (28)

In the actual model there is 41 parameters, counting with the
density ρo of the medium. The problem is how to find then.
The demonstration for the equation above can be found at
Átila Joaquim Costa (2012).

There are a lot of possible methods, but one interesting way
to solve it is to use the Monte Carlo method to raffle the
parameters, defining an plausible geological interval,

∆g = |gobs − gcalc|. (29)

When the ∆g reach an acceptable level, it’s time to stop the
raffling and just add small disturbances at the values of the
parameters to decrease even more ∆g. Despite of that, the
criteria for the algorithm to stop can be very well the time
spent on calculations, or the number of iterations, but those
alone are not good ones.

4 Conclusions

Even though the algorithms shown here are not the most ef-
ficient, the purpose were to show what they can do, and how
to apply in realistic geophysical problems. In fact, there are
situations that other algorithms do a best job, like the bisec-
tion method together with the Gauss-Newton’s method, or

iterative methods to solve linear equations, such as Gauss-
Seidel, or Jacobi. Despite of that, is not just the numerical
method, but also the code implementation that must seek ef-
ficient use of RAM memory and computer power, to become
possible to have a fast and precise result.

Also, studies like that presented in this paper emphasize
the importance to study numerical methods to improve the
toolbox necessary to solve problems of different nature, in-
cluding geophysical ones. There are universities that don’t
offer sufficient numerical analysis related course in com-
pulsory disciplines for the geophysics degree. Therefore
is important to, along the degree, the students to have ac-
cess to models and numerical methods needed to solve the
mentioned problems.
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