
A hybrid methodology for a 3D Full Waveform Inversion in time domain using GPUs
David L. Abreo 1, Sergio A. Abreo 1, Ana B. Ramirez 1.
1 Universidad Industrial de Santander, Colombia.

Copyright 2017, SBGf - Sociedade Brasileira de Geofı́sica

This paper was prepared for presentation during the 15th International Congress of
the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August,
2017. Contents of this paper were reviewed by the Technical Committee of the 15th
International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.

Abstract

Full Waveform Inversion (FWI) is an iterative method
that allows to determine the subsurface parameters
from the observed data at surface and an initial model.
The main drawback of a 3D FWI implementation in
the time domain is the computational cost because
the required memory and the execution time are very
expensive. In serial platforms, the main constraint of
a 3D FWI implementation is the execution time. On
the other hand, in Parallel platforms such as GPUs the
main constraint is the available memory resources. In
this paper, we designed and implemented a strategy
that takes advantage of both platforms, serial and
parallel, using MPI and CUDA-C to resolve both
problems. The new implementation has a speedup
factor of 1.84x and a 76% of reduction of the required
memory. This methodology makes feasible the 3D FWI
implementation using a GPU cluster.

Introduction

In the last years, the Full Waveform Inversion method
(FWI), used for estimate the model’s properties, has gained
attention in the geophysical community, because allows
high quality reconstructions of the properties.

The FWI is a nonlinear data adjustment procedure that
aims to obtain estimates subsurface properties from the
observed data dobs. The process starts with an initial
estimate of the model’s parameters m0. Then the modeled
data dmod are predicted by the solution of the wave equation
(Equation 2) with m0. The new estimated parameters are
updated to reduce the mismatch between dobs and dmod .
The process is repeated iteratively until the error between
dmod and dobs is smaller than a reference value or until the
stopping criterion has been reached (Virieux and Operto,
2009).

One of the main disadvantages of a 3D FWI
implementation in time domain is the computational
cost because it is required to compute and save both the
forward and backward fields to calculating the gradient
(Plessix, 2006). In addition, a massive amount of
operations are required, which implies a high execution
time.

In Abreo et al. (2015) is implemented a 2D FWI in
time domain using GPUs (NVIDIA, 2005) to reduce the
computational cost. Although these devices are efficient

in massive data processing (ideal for three-dimensional
processing), they have difficulties when large amounts of
information are stored.

In this paper is proposed a hybrid methodology using
MPI and CUDA-C (NVIDIA, 2010) to reduce both the
memory required and the computation time of a 3D
FWI implementation. The proposed methodology makes
feasible the 3D FWI implementation taking advantage of a
GPU cluster.

Method

The FWI method uses the observed seismic data at the
surface dobs to estimate the subsurface velocity model m,
through the minimization of the difference between dobs and
dmod (Tarantola, 1984) as,

φ = argmin
m
||dmod(m)−dobs(m)||22, (1)

where || · ||22 is the L2-norm square operator.

During a seismic acquisition, dobs are the obtained traces
from the real model m. And dmod are the obtained traces
from an estimated model m̂ using the operator

F{·},
{

1
m̂2(x,y,z)

∂ 2p
∂ t2 =

∂ 2p(x,y,z, t)
∂x2 +

∂ 2p(x,y,z, t)
∂y2 +

∂ 2p(x,y,z, t)
∂ z2 + s(x,y,z, t)

}
,

(2)

where p(x,y,z, t) denotes the pressure field; x, y and z
are the spatial variables; t is the time variable and s is
the source. In this paper we used Convolutional Perfectly
Matched Layer method (CPML) (Pasalic et al., 2010)
to avoid the reflections that come from the non-natural
boundaries as was used by Abreo et al. (2015).

Equation 2 is implemented using centered finite differences
in time domain (FDTD). A second order stencil is used for
the time derivative and an eighth order stencil is used for
the space derivatives (Sullivan, 2013).

The second order stencil is defined as

∂ 2p
∂ t2 ≈

pn+1
i, j,k−2 ·pn

i, j,k +pn−1
i, j,k

∆t2 , (3)

where i, j,k and n represent the discretized variables for
x,y,z and t, respectively; and ∆t is the time step. (see
Figure 1, red circles).

The eighth order stencil for the component x is defined as

∂ 2p
∂x2 ≈

∑
4
c=−4 a(4+ c) ·pn

i+c, j,k

∆x2 , (4)

Fifteenth International Congress of the Brazilian Geophysical Society

A HYBRID METHODOLOGY FOR A 3D FULL WAVEFORM INVERSION IN TIME DOMAIN USING GPUS 2

a) b) c)

x

y
z

x

y
z

x

y
z

Figure 1: Graphical representation FDTD. a)Pn+1 b)Pn

c)Pn−1

where a = [−1
560 ,

8
315 ,

−1
5 , 8

5 ,
−205

72 , 8
5 ,
−1
5 , 8

315 ,
−1
560] are the

weights of the centered approximation and ∆x is the spatial
step in the x direction (see Figure 1-b).

A general scheme of an FWI implementation is shown in
Figure 2. The algorithm iteration k starts with a zero value
which is increased by each iteration step.

k = 0
Yes No

FWI

m̂ = m0 m̂ = mk

F{·}

F{·} ∂ 2{·}
∂ t2

dobs dmod

p

−

m

λ ∂ 2p

g(mk)

mk+1 = mk +αk∆mk

Stopping
criteria

Seismic
acquisition

No

Yes

End FWI

Figure 2: General scheme of an FWI implementation

In the first iteration m̂ takes an initial model m0 and for
the next ones takes the model mk. The time derivative
of the wave field ∂ 2p is calculated using Equation 2 with
s as a punctual source at surface. The wave field λ is
calculated with the same Equation 2 using the residual
traces obtained from of dobs and dmod as a source. This

is possible because F{·} is a self-adjoint operator.

The update for the velocity model can be obtained using
Newton-like methods (Goldstein, 1965), as

mk+1 = mk +αk∆mk, (5)

where αk is the step size and ∆mk at the kth iteration is
given by

∆mk =−[H(mk)]−1g(mk), (6)

with the gradient g(mk) of cost function φ and the inverse
of the Hessian matrix [H(mk)]−1, both evaluated at mk.

The Hessian matrix is replaced by the identity matrix to
reduce the computational cost of this operation. The
gradient can be calculated using the Plessix (2006)
expression

g(mk) = ∑
Ns

∫ T

0

∂ 2p(x,y,z, t)
∂ t2 ·λ (x,y,z,T − t)dt (7)

where Ns is the number of sources and T is the propagation
time.

Strategies to compute the Gradient

Figure 3 illustrates the gradient computation where the
blacks arrows (∗) indicate the operations flow and the
green squares represent the memory saved inside the
GPU. First, the wave field p and its derivate are calculated.
Second, the residuals are computed from dobs and dmod .
Third, the backward field λ is computed using the residuals.
Fourth, the wave fields are multiplied point to point, (∗∗), to
find a temporal gradient Gtemp. Fifth, Gtemp is accumulated
for all the time steps (∗∗∗) to get the gradient g(mk).

.

.

.

.

.

.

�

x =

=

=

=

=

.

.

.

Gtemp

Gtemp

Gtemp

i=0

n-1

= g(m)k

x

x

x

x

(*)

(**)

(***)

=

.

.

.
x

�p(1) (1)
2

Figure 3: Gradient calculation saving two field

The memory required by the 2D FWI implementation in
time domain of Abreo et al. (2015) is defined as

Ram size 2D =
β

10242 ·8
· (Ns ·Nt ·Nx +11 ·Nx ·Nz+

Nt +2 ·Nx ·Nz ·Nt +4 ·Nx +4 ·Nz +2 ·Nt ·Nx),

(8)

where Nx and Nz are the number of spatial steps in x and z
directions, respectively; Nt is the number of time steps, Ns

Fifteenth International Congress of the Brazilian Geophysical Society

DAVID L. ABREO, SERGIO A. ABREO, ANA B. RAMIREZ 3

is the number of shots and β is the type of precision (single
or double).

An approximate expression for a 3D FWI implementation
saving both fields, p and λ , inside a GPU is

Ram size 3D =
β

10242 ·8
· (Ns ·Nt ·Nx ·Ny +11 ·Nx ·Ny ·Nz+

Nt +2 ·Nx ·Ny ·Nz ·Nt +4 ·Nx +4 ·Ny +4 ·Nz +2 ·Nt ·Nx ·Ny).

(9)

where Ny is the number of spatial steps in the y direction.

This expression allows to compute the theoretical memory
required to compute the gradient storing p and λ . In a small
model (Nx = 100,Ny = 100,Nz = 100,Nt = 2000,Ns = 15) the
memory necessary to implement the 3D FWI is 16.5 GiB
leaving disable our GPU Tesla k40c (NVIDIA, 2011) with
only 12 GiB of RAM.

Due to this problem, it is necessary to design and
implement strategies to reduce the memory required. In
this paper two strategies are defined to perform the 3D FWI
in time domain implementation.

First strategy

The first strategy, is to solve the gradient storing only ∂p
inside the GPU. Then Gtemp is calculated at each time step
through the multiplication of λ (i) with ∂ 2p(i). Finally, g(mk)
is obtained performing a summation over Gtemp (Figure 4).
This strategy keeps the computational cost reducing the
memory required in a 50 %.

.

.

.

.

.

.

�

�

�

x =

=

=

=

=

.

.

.

Gtemp

Gtemp

Gtemp

i=0

n-1

= g(m)k

x

x

x

x

(*)

(**)

(***)

.

.

.
=

.

.

.
x

�p(1)

(n-1)

(1)

(0)

2

Figure 4: Gradient calculation saving one field

Second strategy

The second strategy does not save any field. λ is
reconstructed in inverse sense (i.e since the snapshot i = 0
to i = n−1) and p with its derivate are calculated two times
(only saving the actual snapshot ∂ 2p(i)). This strategy is
implemented in five steps. First, p is calculated to obtain
dmod . Second, the residuals are computed from dobs and
dmod . Third, λ is computed using the residuals saving
only the boundary data, λ (0) and λ (1). Fourth, λ (i) and
∂ 2p(i) are calculated at the same time step (black arrows)

and they are multiplied point to point to find a temporal
gradient Gtemp remembering that λ (i) is reconstructed from
the boundary data. Fifth, Gtemp is accumulated for all
time steps to get the gradient g(mk). Figure 5 shows this
strategy.

.

.

.

.

.

.

�

�

x =

=

=

=

=

.

.

.

Gtemp

Gtemp

Gtemp

i=0

n-1

= g(m)k

x

x

x

x

(*)

(**)

(***)

.

.

.

.

.

.
=

.

.

.
x

�p(0)

�p(1)

�p(n-1) (n-1)

(1)

�(i)

2

2

2

Figure 5: Gradient calculation without save any field
Hybrid implementation using MPI

A scheme of the FWI using MPI is described in Figure 6.

The number of shots Ns are equally distributed inside the
GPU cluster using MPI. Each GPU receives the iths shot to
compute the gis gradient. GiG accumulates gis per GPU.
This process is repeated until is < Ns. MPI collects all
the computed gradients to obtain g(mk). The new velocity
model is computed using only one GPU and shared to all
the cluster to repeat the process. The loop stops when the
stopping criteria is reached.

This scheme keeps the same memory requirements
reaching a speedup factor of

Speedup =
NS +Tserial

ceil(NS/NG)+Tserial
, (10)

where the Tserial is the time needed to calculate g(mk) and
mk+1.

Results

The tests are performed in a cluster with a CPU Intel Xeon
E5-2609 with 256 GiB of RAM and two GPUs Tesla K40
with 12 GiB of RAM (NVIDIA, 2011).

The model chosen to implement the FWI 3D is a diffracting
cube (2500 m/s) inside a velocity constant volume of
2000 m/s. In Figure 7, a slice in-line of both the truth
velocity model and the starting point for the FWI 3D are
illustrated. Fifteen sources distributed at surface and a
model of Nx = 211,Ny = 101,Nz = 68 are used.

Figure 8 illustrates a 3D visualization of the FWI results
using the hybrid methodology. The sources are marked as
red points at surface.

The image is edited to eliminate the constant velocity
volume to highlight the reconstruction and the sources
effect. The reconstruction is obtained after a multi-scale
implementation (Bunks et al., 1995) using a Ricker wavelet
with three central frequencies (3, 10 and 15 Hz), 30

Fifteenth International Congress of the Brazilian Geophysical Society

A HYBRID METHODOLOGY FOR A 3D FULL WAVEFORM INVERSION IN TIME DOMAIN USING GPUS 4

GPU 0

is =−NG

is < Ns

FWI

g(mk) = ∑NG
GiG(mk)

mk+1 = mk +αk∆mk

Yes

NoStopping
criteria

EndFWI

k+= 1

GPU iG

is = iG−NG

is < Ns

gis(mk)gis(mk) gis(mk)

GiG = ∑gisG0 = ∑gis GNG = ∑gis

is+= NGis+= NG is+= NG

GPU NG−1

is =−1

is < Ns

k =−1

Sync
GPU 0

Figure 6: Schema FWI using MPI.

True Velocity Model.

0 1 2 3 4 5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

Initial Velocity Model.

Distance (km)

0 1 2 3 4 5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

Figure 7: True and initial velocity models

iterations per frequency step and α = 90, 130 and 85,
respectively.

Figure 9 is a 2D slice in-line of the reconstruction at the
same position of Figure 7. Figure 10 shows the 1D profile
of the initial, final and true velocity models extracted from
the center of the x, y surface.

2000 m/s

1800 m/s

Inline distance
Inl

ine
 di

sta
nce

 (k
m)

D
ep

th
 (

k
m

)

Crossline

distance (km)

2500 m/s

1800 m/s
0 1 2

0

0.5

1

1.5

0

 1

 2

 3

 4

 5

Figure 8: Final velocity model.

Final Velocity Model.

Distance (km)

0 1 2 3 4 5

D
e
p
th

 (
k
m

)

0

0.5

1

1.5

2000

2100

2200

2300

2400

2500

Figure 9: 2D section of the final velocity model.

Velocity [m/s]

1600 1800 2000 2200 2400 2600 2800

D
e
p
th

 [
m

]

0

200

400

600

800

1000

1200

1400

1600

Velocity Profile

True Model

Initial Model

Final Model

Figure 10: Comparison of velocity profile

In Table 1 the execution time and memory requirements
per GPU are shown using both strategies running on one
or two GPUs with MPI. The time is measured in minutes.

Table 1: Execution time and memory requirements
Strategy # GPUs Time [m] Memory [GiB]
I 1 635 8.64
I 2 345 8.64
II 1 984 2.09
II 2 537 2.09

Conclusions

In this paper is implemented the FWI 3D in time domain
using two strategies to calculate the gradient and a hybrid
implementation to reduce the execution time using a cluster

Fifteenth International Congress of the Brazilian Geophysical Society

DAVID L. ABREO, SERGIO A. ABREO, ANA B. RAMIREZ 5

with 2 or more GPUs.

According to Table 1, the execution time of the first strategy
is 35% faster than the second strategy because the last
one requires to perform an additional propagation to save
the data at boundaries.

On the other hand, the second strategy only needs the
24% of the memory required by the first strategy. This is
because in the first strategy is saved one field and in the
second strategy is only saved the data at boundaries.

In the hybrid implementation the runtime is reduced in
a 46% because the shot gathers are equally distributed
between the number of GPUs inside the cluster.

The memory required using MPI does not change
compared with the stand alone implementation because
each GPU needs all the information to calculate the
gradient.

Acknowledgements

This work is supported by Colombian Oil Company
ECOPETROL and COLCIENCIAS as a part of the research
project grants No. 0266-2013. The authors gratefully
acknowledge Industrial University of Santander.

References

Abreo, S., A. Ramirez, D. Abreo, O. Reyes, and H.
Gonzales, 2015, A practical implementation of acoustic
full waveform inversion on graphical processing units:
Ciencia, TecnologÃa y Futuro, 6, 5–16.

Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995,
Multiscale seismic waveform inversion: Geophysics, 60,
1457–1473.

Goldstein, A. A., 1965, On newton’s method: Numerische
Mathematik, 7, 391–393.

NVIDIA, 2005, Gpu computing
revolutionizing high performance computing:
www.stanford.edu/sep/prof/bei11.2010.pdf. (Revisado:
December 2016).

——–, 2010, What is cuda:
www.developer.nvidia.com/what-cuda. (Revisado:
December 2016).

——–, 2011, Gpu tesla k40 computing
revolutionizing high performance computing:
www.nvidia.com/content/PDF/kepler/nvidia-tesla-
k40.pdf. (Revisado: December 2016).

Pasalic, D., R. McGarry, et al., 2010, Convolutional
perfectly matched layer for isotropic and anisotropic
acoustic wave equations.

Plessix, R.-E., 2006, A review of the adjoint-state
method for computing the gradient of a functional
with geophysical applications: Geophysical Journal
International, 167, 495–503.

Sullivan, D. M., 2013, Electromagnetic simulation using the
fdtd method: John Wiley & Sons.

Tarantola, A., 1984, Inversion of seismic-reflection data
in the acoustic approximation: Geophysics, 48, 1259–
1266.

Virieux, J., and S. Operto, 2009, An overview of
full-waveform inversion in exploration geophysics:
GEOPHYSICS, 74, WCC1–WCC26.

Fifteenth International Congress of the Brazilian Geophysical Society

