
Reverse Time Migration on a GPU Cluster Using the Seismic Data Parallelism Strategy
Ivan Obregon 1, William Salamanca 1, Ana B. Ramirez 1.
1 Universidad Industrial de Santander, Colombia.

Copyright 2017, SBGf - Sociedade Brasileira de Geofı́sica

This paper was prepared for presentation during the 15th International Congress of
the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August,
2017. Contents of this paper were reviewed by the Technical Committee of the 15th
International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.

Abstract

The seismic migration is one of the seismic processing
stages employed by the oil and gas industry to
generate subsurface images. This process is
responsible for relocating the recorded seismic events
to its correct spatial position and collapse the
diffractions to their scattering points. Reverse-Time
Migration (RTM) is one of the most common methods
because it generates subsurface images with high
quality in scenarios with complex structures. However,
the method implies a high computational cost because
it uses the solution of the wave equation to find the
source wavefield, increasing the runtime. In this work,
we propose a Reverse-Time Migration implementation
using a GPU cluster, by taking advantage of the
independence of the seismic data, more specifically
the shots gathers acquired in the field. The proposed
strategy consists in split the data to be processed
in different GPUs using Message Passing Interface
(MPI). Then, each GPU independently applies the RTM
method to its corresponding portion of the total data.
The final migrated image is generated by adding the
results obtained from each GPU. The advantage of this
strategy is its scalability, because the performance can
be improved by adding more hardware (GPUs). We
tested the method by using the synthetic Marmousi
II model, obtaining a speed up factor of 5.61 when 3
nodes are used in comparison to the implementation
in a single GPU.

Introduction

In the oil and gas industry, the seismic exploration is a
fundamental pillar in their functioning, due to the high
demand for crude oil to satisfy the energy, transport or
other financial markets. The seismic exploration of oil
and gas is composed of some stages as: acquisition,
inversion, seismic migration, analysis and interpretation.
The seismic migration is responsible for generating the final
subsurface image that will be used for its posterior analysis
and interpretation.

Currently, different seismic migration techniques are
available: One-Way Wave Equation Migration (OWWEM)
and the Reverse-Time Migration (RTM). OWWEM is
commonly used due to its low computational cost and
acceptable degree of accuracy. On the other hand, RTM
uses the two-way wave equation, which provides a better

accuracy in the migrated final images for areas of complex
geology, but it has a high computational cost (Araya-Polo
et al. (2008)).

RTM was introduced by (Baysal et al. (1983)) and it is
based in the exploding reflector model to recover the
amplitudes at zero time which denote the location and
strength of the reflectors. Because it uses the two-way
wave equation to model the wave propagation, then its
computational cost in terms of memory and execution time
is high.

Some authors are investigating new techniques to reduce
these computing times. One of them is based on using
Graphics Processing Units (GPUs) because it is a parallel
programming paradigm that allows execute many task
at the same time (Foltinek et al. (2009)) (Panetta et al.
(2009)) (Amado et al. (2015)). Typically, these GPUs are
programmed in CUDA-C language and are allocated in
clusters, where the GPUs have a communication protocol,
allowing the implementation in multiple GPUs.

In this paper, we present a RTM technique implementation
that uses a GPU cluster, taking advantage of the
independence of the seismic data. We use MPI-CUDA
and CUDA-C implementation to reduce compute times
approximately to the number of GPUs used.

Methodology

RTM Theory

The RTM algorithm has three principal steps: forward
propagation, backward propagation and the imaging
condition. These processes are applied for each shot
obtained during the acquisition, and they generate a
portion of the final image. A sum of partial images is
performed to obtain the final subsurface image.

In the forward propagation stage, the propagation of a point
source through a known medium is computed obtaining
the source wavefield (SF ). In this work, the source
wavelet propagation was modeled using the acoustic wave
equation in an isotropic medium with variable density,
which is defined by

1
ρ(x,z)

∂ 2P(x,z, t)
∂ t2 = c(x,z)2 ·

(
∂ 2P(x,z, t)

∂x2 +
∂ 2P(x,z, t)

∂ z2

)
+ src(x, t), (1)

where P(x,z,t) is the pressure field, src(x, t) is the point
source, t is the time variable, x is the spatial inline variable,
z is the spatial depth variable and c(x,z) is the velocity
model. We used finite difference in time domain (FDTD),
with 8th spatial order and 2nd time order, to approximate
the solution of the acoustic wave equation.

Similarly, for the backward propagation, the same

Fifteenth International Congress of the Brazilian Geophysical Society



RTM ON A GPU CLUSTER USING SEISMIC DATA PARALLELISM 2

(c)

(a)

(b)

Figure 1: RTM algorithm. (a) Forward Propagation, (b)
Backward propagation and (c) Imaging condition for times
t = 1 (left column), 2.1 (middle column) and 3 (right column)
seconds.

procedure is repeated in backwards time, i.e., start from
the traces obtained at the surface level, named observed
data, as sources and perform the backpropagation in time.
The backward propagation is called the receivers wavefield
(RF ). When both fields are computed, an imaging condition
is performed which is given by the cross-correlation
operation described by

∑
t

SF(x,z, t) ·RF(x,z, t) (2)

The Figure 1 shows the behavior of the three steps of the
algorithm, for times t = 1 s (left), t = 2.1 s (center) and t =
3 s (right) for (a) the source wavefield and (b) the receivers
wavefield. The imaging condition is applied to generate the
subsurface image in (c) for a two-layer model.

The RTM implementation strategy was coded in a cluster
GPU using C and CUDA-C languages with libraries of
MPI (Message Passing Interface) standard. The following
section describes the implementation strategy.

Seismic Data Parallelism strategy

The strategy was implemented taking into account the
independence of the shots, such that we divide the global
data in equal parts, generating and processing each shot in
different GPUs. We use standard MPI to communicate and
control the process between the GPUs. Figure 2 shows the
diagram of the proposed strategy.

In order to control the distribution of the shots for each
GPU, we used the standard MPI. MPI is a library developed
to divide the CPU’s resources into ranks, these ranks can
execute task in parallel to make process more efficiently
or create communication between devices (Gropp et al.

Global Shots Data

Split Data in GPUs

RTM Algorithm

GPU_1

RTM Algorithm

GPU_2

Image_2

RTM Algorithm

GPU_n

MPI_SUM

Final Image

Figure 2: Behaivor of the RTM algorithm. (a) Forward
Propagation, (b) Backward propagation and (c) imaging
condition for times 1, 2.1 and 3 seconds.

CPU

GPU_4

GPU_3

RAM

Node_2
Slave

CPU

GPU_2

GPU_1

RAM

Node_1
Master

CPU

GPU_6

GPU_5

RAM

Node_3
Slave

331 Mbit/s 314 Mbit/s

Figure 3: GPU Cluster of the implementation.

(1999)).

For the implementation, we used a GPU cluster with 3
nodes, where each node has a CPU and RAM with 2
GPUs. We took the Node 1 as master (see Figure 3), which
is in charge of distributing the information and the tasks to
the other nodes and to itself. The master node controls the
others nodes using the MPI ranks; therefore, exist a master
rank. This master rank loads the models and the shots to
distributes to the others ranks, i.e. all ranks working have
a copy of the files necessary to work. Each node contains
2 ranks (same as a number of GPUs) except the master
node which has 3 ranks.

The principal benefit of this strategy is their scalability, i.e.,
if we want to improve the performance, we can add more
hardware, in this case, more GPUs or nodes to the cluster.

Example

The model used to test the proposed GPU parallel
implementation was the Marmousi II, having a size of
12.5 km wide and 4.4 km deep as is shown in Figure 4. The
model was discretized using a grid of 25x25 m such that
the the number of grid points is given by nx= 501×nz= 176.
We used 70 shots with 421 receivers per shot.

The CPML zone was implemented according to (Pasalic
and McGarry (2010)). The parallel implementation was
executed on a cluster GPU having 6 NVIDIA Tesla K40,
such that 4 GPUs migrated 48 shots and 2 GPUs 22 shots
to complete 70 shots.

In the proposed strategy, we process the shots in three
different nodes, generating a three portion of the final
image. These images are shown in the Figure 5.

Figure 6 shows the final migrated image obtained when 70
shots are used and Figure 7 shows the migrated image

Fifteenth International Congress of the Brazilian Geophysical Society



IVAN OBREGON, WILLIAM SALAMANCA AND ANA B. RAMIREZ 3

Offset [m]

D
ep

th
 [
m

]

2000 4000 6000 8000 10000 12000

1000

2000

3000

4000

Offset [m]
D

ep
th

 [
m

]
2000 4000 6000 80000 10000 12000

1000

2000

3000

4000

1000

1200

1400

1600

1800

2000

2200

2400

2600

1500

2000

2500

3000

3500

4000

4500

Figure 4: Velocity in [m/s] (top) and density in [kg/m3]
(bottom) model for the Marmousi II model.

when a Laplacian filter is applied to the final image such
that the backpropagation effect is eliminated.

Results

We evaluate the performance of the cluster implementation
by measuring the time spent by a single GPU, and
using such value as reference value (tre f ) in the speedup
computation given in Equation 3. Also, we executed the
proposed strategy for 2 (1 node), 4 (2 nodes) and 6 (3
nodes) GPUs (tstrategy) in Equation 3, to calculate the speed
up factor and the total memory used in the GPU and the
CPU. The speed up factor is defined by

SpeedU p =
tre f

tstrategy
. (3)

For the GPU memory (in MiB) required by the proposed
strategy is

GPUmem = [18 · (nx ·nz)+2 · (nx+nz)+

nt +2 · (nx ·nt · spgpu)] · 4
220 .

(4)

For the CPU memory in the master rank (in MiB) is given
by

CPUmemMR = [5 · (nx ·nz)+2 ·ns+nt+

(nx ·nt)+(nx ·nt ·ns)] · 4
220 .

(5)

Offset [m]

D
ep

th
 [

m
]

2000 4000 6000 8000 10000 12000

500

1000

1500

2000

2500

3000

3500

4000

Offset [m]

D
ep

th
 [

m
]

2000 4000 6000 8000 10000 12000

1000

2000

3000

4000

Offset [m]

D
ep

th
 [

m
]

2000 4000 6000 8000 10000 12000

1000

2000

3000

4000

Figure 5: Image migrated of Node 1 (top), Node 2 (middle)
and Node 3 (bottom).

And the CPU memory for the other ranks (in MiB) is
obtained by

CPUmemOR = [5 · (nx ·nz)+2 ·ns+nt+

(nx ·nt)+(nx ·nt · spgpu)] · 4
220 ,

(6)

where nx and nz is the dimension of the model in points,
nt is the number of time steps of the propagation, ns is
the number of shots and spgpu is the shots per GPU to
process.

Figure 8 shows the speed up of the strategy, observing a
positive value and greater than one when the number of
GPUs increases. Ideally, the speeds up and number of
GPUs might be the same but in practice we can see for
6 GPU its speed up is 5.61, due of between nodes exist
a physical connection that causes a delay when the final
image is created.

The memory used in the test was measured per node and
per rank. Table 1 show the values of the amount of memory

Fifteenth International Congress of the Brazilian Geophysical Society



RTM ON A GPU CLUSTER USING SEISMIC DATA PARALLELISM 4

Offset [m]
D

ep
th

 [
m

]
2000 4000 6000 8000 10000 12000

1000

2000

3000

4000

Figure 6: Migrated image in 6 GPUs using 70 shots.

Offset [m]

D
ep

th
 [

m
]

2000 4000 6000 8000 10000 12000

1000

2000

3000

4000

Figure 7: Migrated image with a Laplacian filter.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Number of GPUs

Sp
ee

d 
U

p

Speed up Obtained

Figure 8: Speed up obtained for 1, 2, 4 and 6 GPUs.

Table 1: Memory used for one GPU.
Node rank GPU Memory [MiB] CPU Memory [MiB]

1 1 3390.81 88.5
2 0 0

Table 2: Memory used for the proposed strategy
Node rank GPU Memory [MiB] CPU Memory [MiB]

1
1 - 473.3
2 2616 89.8
3 2616 89.8

2 4 2616 89.8
5 2616 89.8

3 6 2602 82.9
7 2602 82.9

used in the reference strategy and the table 2 shows the
memory used in the proposed strategy.

The GPU memory used in the proposed strategy vary
depends the number of shots, because no all ranks will be
work with the same number of shots. Moreover, the rank
1 does not use a GPU memory because it only loads the
data and distributes the shots to the other ranks. The CPU
memory varies for the same reason of the GPUs memory
except for the rank 1 that needs more memory to load the
total data.

Conclusions

The computational cost of the proposed strategy shows
that there is a significantly positive acceleration compared
to the implementation in a GPU, decreasing the time 5.6
times. Also, we can observe will be exist a max of GPUs
for this strategy due of exist an external communication
between nodes for exchange of data. About the memory,
exist a reduction of the GPU memory but increasing the
total CPU memory.

The scalability that contributes to the process using the
proposed strategy allows increase the performance of the
method adding more hardware but taking into account that
will be exist a maxima of GPUs to work.

Acknowledgements

This work is supported by Colombian Oil Company
ECOPETROL and COLCIENCIAS as a part of the research
project grant 0266 of 2013. The authors gratefully
acknowledge the support of CPS research group of the
Industrial University of Santander.

References

Amado, J., W. Salamanca, F. A. Vivas, and A. Ramirez,
2015, A gpu implementation of the reverse time
migration algorithm: 14th International Congress of
the Brazilian Geophysical Society & EXPOGEF, Rio de
Janeiro, Brazil, 3-6 August 2015, Brazilian Geophysical
Society, 1016–1021.

Araya-Polo, M., F. Rubio, M. Hanzich, R. de la Cruz, J. M.
Cela, and D. P. Scarpazza, 2008, High-performance
seismic acoustic imaging by reverse-time migration on
the cell/be architecture: ISCA2008.

Baysal, E., D. D. Kosloff, and J. W. Sherwood, 1983,
Reverse time migration: Geophysics, 48, 1514–1524.

Foltinek, D., D. Eaton, J. Mahovsky, P. Moghaddam, R.

Fifteenth International Congress of the Brazilian Geophysical Society



IVAN OBREGON, WILLIAM SALAMANCA AND ANA B. RAMIREZ 5

McGarry, et al., 2009, Industrial-scale reverse time
migration on gpu hardware: Presented at the 2009 SEG
Annual Meeting, Society of Exploration Geophysicists.

Gropp, W., E. Lusk, and R. Thakur, 1999, Using mpi-2:
Advanced features of the message-passing interface:
MIT press.

Panetta, J., T. Teixeira, P. R. de Souza Filho, C. A.
da Cunha Finho, D. Sotelo, F. M. R. da Motta, S. S.
Pinheiro, I. P. Junior, A. L. R. Rosa, L. R. Monnerat,
et al., 2009, Accelerating kirchhoff migration by cpu
and gpu cooperation: Computer Architecture and High
Performance Computing, 2009. SBAC-PAD’09. 21st
International Symposium on, IEEE, 26–32.

Pasalic, D., and R. McGarry, 2010, Convolutional perfectly
matched layer for isotropic and anisotropic acoustic
wave equations, in SEG Technical Program Expanded
Abstracts 2010: Society of Exploration Geophysicists,
2925–2929.

Fifteenth International Congress of the Brazilian Geophysical Society


