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Abstract

Least-squares migration is often used to attenuate
migration artifacts that arise in conventional migration
due to, for instance, data incompleteness and limited
recording aperture. It uses iterative methods to
obtain a model that best fits the data, and it requires
a forward/adjoint operator pair to do so. These
methods use the gradient of the cost function to
estimate search directions and update the current
model. The gradient is obtained by migrating the
residuals between estimated and observed data at
each iteration. Migration operators are regarded as
adjoint of forward operators but only those which
pass the dot-product test are exact adjoints. These
operators estimate more accurate search directions,
enhancing the convergence rates of iterative methods.
We test the performance of adjoint and pseudo-adjoint
operators in LSM based on three different iterative
methods (steepest descent, conjugate gradients and
limited-memory BFGS) in order to assess their
sensitivity to the adjointness of the migration operator.
We then compare the performance of each method.

Introduction

Seismic migration aims to obtain accurate distribution of
the subsurface reflectivity for a given velocity distribution.
There are different migration methods in the literature.
Each one of these methods defines a modelling/migration
operator pair which is, in some way, derived from
the wave equation and have its own advantages and
disadvantages. Migration operators are regarded as
adjoint to its corresponding forward modelling operators
but only those which pass the dot-product test (Claerbout,
1992) are exact adjoints, otherwise it should be regarded
as pseudo-adjoint operators (Xu et al., 2016). Adjoint and
pseudo-adjoint operators perform similarly, and introduce
migration artifacts into the final image due to its non-
orthogonality.

The migration artifacts degrade the quality of the final
image, and much attention has been placed in how to
effectively attenuate it. The Least-Squares Migration (LSM)
approach is known to be effective in mitigating these
artifacts, thereby improving the resolution of the final

seismic image. LSM can be adapted to different migration
methods such as Kirchhoff migration (Nemeth et al., 1999),
one-way wave equation migration (Kuehl and Sacchi, 2002)
and RTM (Ji, 2009). For any of these, LSM comes down to
solving the system of normal equations which requires the
inverse of the Hessian matrix. In geophysical problems,
however, computing and storing the inverse of this matrix
is troublesome due to its large sizes.

As an alternative, LSM uses iterative methods to solve the
system of normal equations without inverting matrices, only
requiring the action of the forward/adjoint operator pair to
be known. At each iteration, such methods use the adjoint
operator to estimate the gradient of the cost function, which
is used to obtain search directions and optimized reflectivity
models. Therefore, exact adjointness of these operators
is required to guarantee good convergence rates in the
inversion process. For instance, Ji (2009) shows that the
convergence rates in LSM is enhanced by the exact adjoint
operators. Exact forward/adjoint operator pairs have been
formulated for post- and pre-stack acoustic RTM by Ji
(2009) and Xu and Sacchi (2016), respectively. Xu et al.
(2016) extended their previous work for the elastic case.

To take better advantage of the LSM, iterative methods that
offers good convergence rates stand out as preferential
choices in such schemes. For instance, the conjugate
gradients method is vastly used in the geophysical
literature (e.g., Scales (1987); Ji (2009); Xu and Sacchi
(2016)). Another class of iterative methods that has good
convergence rates are the quasi-Newton methods, such
as the L-BFGS (Nocedal, 1980). This method uses the
past m gradients and models to approximate the inverse of
the Hessian matrix, which improves its convergence rates
when compared to other iterative methods. Wu et al. (2015)
presented a L-BFGS based LSM using Kirchhoff operators.

In this paper we follow the idea presented in Ji (2009), and
we use the routines provided by him, available in http:
//software.seg.org, to test three different iterative
methods (steepest descent (SD), conjugate gradients (CG)
and L-BFGS) in order to assess their sensitivity to exact
and pseudo-adjoint operators, as well as their efficiency.
We start with a short review of LSM principles in the first
part. The next section discusses the iterative methods,
focusing on the L-BFGS. We follow by presenting the
numerical results obtained with SEG-EAGE salt model.
Finally, the conclusions are presented.

Theory

Forward-modelling operators (L) are usually linearized by
means of the Born approximation, and it is assumed that it
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satisfies

d = Lm, (1)

where d is the modeled data vector, and m is the reflectivity
model vector (Nemeth et al., 1999). Conventional migration
operators are regarded as the adjoint to modelling
operators, and are represented by the mathematical
transpose of L

m̂ = LT d. (2)

Even though Yao and Jakubowicz (2015) presented a
explicit matrix representation of generalized diffraction-
stack migration, the matrices corresponding to the
modelling/migration operator pair are usually not built, and
their action is computed on the fly by directly operating
on matrix elements via indices as subroutines (Xu et al.,
2016). In this case, it is necessary to ensure that the written
codes correctly performs the action of LT over vectors,
properly accounting the aspects of matrix transposition.
This is done by the dot-product test (Claerbout, 1992).

Ji (2009) and Xu and Sacchi (2016) describe similar
procedures to obtain post- and pre-stack acoustic reverse
time migration operators, respectively, that pass the dot-
product test. Both start from the formulation of the problem
using matrix-vector formulations. The difference, however,
is that Ji (2009) starts from the matrix-vector form of the
forward operator and take its transpose, while Xu and
Sacchi (2016) derives the forward operator from the adjoint
operator. Nevertheless, the idea is the same for both
approaches; one should write the problem in its matrix-
vector form and transpose it. Moreover, this procedure is
used as guideline on how to properly write a code that
passes the dot-product test but the matrices are never
explicitly built (Xu and Sacchi, 2016). For more information
on the operators, one could refer to Ji (2009), Xu and
Sacchi (2016) or Xu et al. (2016).

Regardless of the adjointness of the operator, it is known
that m̂ is a blurred version of the true reflectivity vector
m. Migration artifacts are introduced into the final section
due to data incompleteness and approximations adopted
to formulate the migration operators (Nemeth et al., 1999).
This means that migration operators are non-orthogonal. In
other words, the adjoint operator is useful in approximating
the inverse operator, but it is not the true inverse.

A better way to approximate the inverse operator is to
formulate migration as a least-squares problem (Nemeth
et al., 1999). In such schemes, called least-squares
migration (LSM), it is desired to find the model parameters
m that minimizes the cost function

J =‖ Lm−d ‖2
2, (3)

which measures the misfit between estimated and
observed data. If perfect data fit is not desired (e.g.,
inaccurate data), a regularization term can be added to
equation 3. Minimizing this cost function requires its
derivative with respect to the unknown m

∇J = LT (Lm−d). (4)

Setting it to zero results in the least-squares solution

m̂ = (LT L)−1LT d (5)

which is the solution to the system of normal equations.

Solving for m̂ as given by equation 5 requires the inverse
of the Hessian matrix, LT L. Even if forward and adjoint
operators are explicit matrices, storing and inverting the
Hessian matrix is still troublesome due to its large sizes.
For that reason, iterative techniques are employed when
solving for m̂.

Iterative methods

Iterative methods play an important role in solving linear
problems, specially large ill-conditioned problems such as
LSM. These methods are also referred as line search
methods since, at each iteration, it computes a search
direction (Dk), and a step length (αk) defines how far to
move along this direction (Nocedal and Wright, 2006). The
general expression for updating the solutions in iterative
methods is given by

mk+1 = mk +αkDk. (6)

The methods used in our work requires Dk as a
descent direction (DT

k ∇Jk < 0) in order to guarantee the
minimization of the cost function at each iteration. The
search direction can be generalized as

Dk =−Bk∇Jk (7)

where Bk is a symmetric and nonsingular matrix (Nocedal
and Wright, 2006). Likewise the SD method, CG
approximate Bk as the identity matrix but ensures that
estimated gradients are mutually orthogonal with respect
to LT L. The L-BFGS, on the other hand, approximates Bk
to the inverse of the Hessian at each iteration.

The effectiveness of iterative methods is related to the
search direction and step length to be used in each
iteration. From equation 7 we see that Dk depends
on the gradient of the cost function, given in equation
4. The gradient is obtained by migrating the residuals
between estimated and observed data at each iteration
and, therefore, uses the adjoint operator. Pseudo-adjoint
operators, thus, will estimate approximate gradients while
adjoint operators will provide accurate estimations of the
gradient. We then expect the efficiency of iterative methods
that employ adjoint operators to be enhanced when
compared to those employing pseudo-adjoint operators, as
shown by Ji (2009) for the CG method. In the following, we
focus on briefly describing the L-BFGS method as the SD
and CG methods are already well known.

Limited-memory BFGS

Quasi-Newton methods are efficient in computing descent
directions at each iteration in optimization algorithms. At
each iteration, it approximates the inverse of the Hessian
matrix to a matrix Bk+1 from Bk. The idea is, thus, to
initialize a symmetric positive definite matrix (B0), such
as the identity, as an approximation to the inverse of the
Hessian matrix and build successive Bk in such a way that
this approximations maintain its properties of symmetry
and positive definiteness. Another constraint imposed to
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Bk is to satisfy the quasi-Newton condition, also known as
secant equation

sk = Bk+1yk (8)

where sk = mk+1−mk and yk = ∇Jk+1−∇Jk.

Among the quasi-Newton methods, the BFGS seems to be
the most effective. Its updating expression is given by

Bk+1 = TT
k BkTk +ρksksT

k (9)

where Tk = (I+ ρkyksT
k ) and ρk =

1
yT

k sk
. By induction it

is possible to see that the last Bk+1 depends on B0 and
all available pairs {s,y}. Therefore, at least 2k vectors,
as well as the elements of the B0, have to be stored
and propagated which might exceed storage capacities of
current computers.

The BFGS can be modified to deal with storage problems.
The method is called limited-memory BFGS (L-BFGS) and
it can preserve the good convergence rates from the BFGS
method. It uses a user defined memory to store the last
m gradients and models obtained in the iterative process
to construct the Hessian approximation. Thus, instead
of using all previous pairs {s,y} as in the BFGS, the L-
BFGS discards earlier information, which are less likely to
carry second order information to the current iteration. In
addition, when the number of iterations is smaller than m,
one should use the available pairs {s,y}. Also, to discard
information means to define T = I and ρssT = 0.

So far it was discussed how to obtain an approximation
to the inverse of the Hessian matrix. It is still necessary
to compute the product of the obtained approximation with
the gradient vector at the current iteration. This product is
computed recursively, as shows Nocedal (1980), and does
not requires the storage of the matrices Bk from previous
iterations. Instead, it is suffice to store the m pairs {s,y},
reducing the memory requirements and computational
costs of the method. The product is computed with a two-
loop recursion algorithm (Nocedal and Wright, 2006), and
it is given in algorithm 1.

Algorithm 1 L-BFGS - Computes the direction Dk =
−Bk∇Jk

Start a matrix B0
q = ∇Jk
for i = k−1, . . . ,k−m do

αi = ρisT
i q

q = q−αiyi
end for
D0 = B0q
for i = k−m,k−m+1, . . . ,k−1 do

β = ρiyT
i ri

Di+1 = Di +(αi−β )si
end for
Returns D

Only for the L-BFGS method we use a backtracking
algorithm to obtain step lengths that satisfy the Armijo’s
condition. The initial step length is always set to 1. More
accurate step lengths might be obtained by using step

lengths that satisfy the curvature condition (Nocedal and
Wright, 2006).

Numerical example

We test all iterative methods employing both adjoint and
pseudo-adjoint operators. We use the post-stack RTM
operators published by Ji (2009) with the SEG-EAGE salt
model (Figure 1) to generate the zero-offset section shown
in Figure 2. This section is considered the observed data.
The used spacial spacing is of 4.5 m in both dimensions,
and temporal sampling rate of 1 ms.

First we illustrate the differences in adjoint and pseudo-
adjoint operators. We migrate the data with both operators
to obtain the results shown in Figures 3a and 3b. As
discussed by Ji (2009), both operators perform same
action and have similar results. It is possible to notice
a difference in amplitude in the migrated images, as well
as the presence of migration artifacts due to the non-
orthogonality of the operators.

In order to attenuate the migration artifacts, we then test
both operators in LSM schemes. Ji (2009) has already
shown that the adjoint operator fits the data better than
the pseudo-adjoint operator using CG. We extend his
analysis to the steepest descent and L-BFGS methods
in order to assess its sensibility to the adjointness of the
operators. All methods are gradient-dependent requiring
the migration operator for its computation. As already
discussed, we expect the search direction estimated by the
pseudo-adjoint operators to be less accurate than those
obtained by the adjoint, leading to slower convergence
rates for the prior. The initial model was set to a null
vector, thus the first iteration for all methods is the same
as the SD method. Moreover, the number of iterations
was set to 10. We compared the results obtained in the
last iteration using adjoint and pseudo-adjoint operators
in Figures 4, 5 and 6 for the SD, CG and L-BFGS
methods, respectively. For all methods, the LSM was
able to effectively attenuate the migration artifacts when
the adjoint operator was employed. On the other hand,
the schemes where the pseudo-adjoint was used show
less improvement at the end of 10 iterations. Figure 7
shows the obtained convergence curves which illustrate
the superior performance of adjoint operators over pseudo-
adjoint operators.

Finally, we compare the iterative methods efficiency in the
LSM. Figure 8 shows the convergence rates for all methods
using the adjoint operator only. We notice that both CG
and L-BFGS have better convergence rates than SD. In
addition, CG and L-BFGS have very similar convergence
rates where CG was outperformed by the L-BFGS method
from iteration number 7, approximately.

Conclusion

We have reviewed the concepts of adjoint and pseudo-
adjoint operators by means of the dot-product test. We
have used the operators provided by Ji (2009) to test
its effects on the performance of iterative methods when
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applied in a least-squares migration scheme. We formulate
LSM based on the steepest descent, conjugate gradients
and L-BFGS methods. The performance of gradient-based
iterative methods is affected by the adjointness of the
migration operator. The convergence rates of each method
is enhanced by the adjoint operator when compared to
the pseudo-adjoint. This enhancement is associated to
the search direction adopted by each method, which is
more accurately estimated by the exact adjoint operator.
We confirm the results presented by Ji (2009), where the
exact adjointness between the modelling and migration
operators has direct influence in least-squares inversion
schemes. However, although not recommended, this does
not means that pseudo-adjoint operators cannot be used in
LSM schemes. In this case, one should bear in mind that
either the number of iterations required to obtain good data
fit would be much bigger, which increases computational
costs, or that the SD method could be a better option.
Furthermore, we compare the performance of the iterative
methods. We observe that the L-BFGS method stands as
a good alternative to the LSM technique when employing
numerically exact adjoint operator pairs, showing similar to
better convergence rates than CG.
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Figure 1: Smooth velocity field of SEG-EAGE salt model.

Figure 2: Synthetic data obtained through forward
modelling.
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(a) (b)

Figure 3: Migrated image with (a) adjoint operator and (b) pseudo-adjoint operator.

(a) (b)

Figure 4: Migrated image after 10 LS iterations based on the SD method with (a) adjoint operator and (b) pseudo-adjoint
operator.

(a) (b)

Figure 5: Migrated image after 10 LS iterations based on the CG method with (a) adjoint operator and (b) pseudo-adjoint
operator.
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(a) (b)

Figure 6: Migrated image after 10 LS iterations based on the L-BFGS method with (a) adjoint operator and (b) pseudo-adjoint
operator.

(a) (b) (c)

Figure 7: Convergence curves for (a) SD (b) CG and (c) L-BFGS methods.

Figure 8: Convergence curve for LSM based on SD (open circles line), CG (dashed line) and L-BFGS (filled circles line)
methods.
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