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Abstract 

The present work shows a methodology to derive facies 
and sand probability volumes from post-stack 3D seismic 
data. The seismic data was inverted to a p-impedance 
volume using a constrained sparse spike algorithm. Then 
probability density functions, derived from well logs, 
together with Bayesian inference were used to derive sand 
probabilities and facies volumes at each voxel in the 
impedance volume. A real data example from Boonsville 
field, Texas (USA) was used to verify the proposed 
workflow. 

Introduction 

Seismic attributes have been routinely used, for decades, 
to distinguish different facies within several types of 
reservoir. However, the tuning effect associated with thin 
reservoirs may result in misleading interpretations from 
seismic attributes. In contrast, the seismic inversion 
process attenuates the wavelet effect, reduces the side-
lobes and as a consequence results in less tuning effect.  

In the present study, we show the benefits of implementing 
a deterministic seismic inversion workflow followed by 
facies prediction with Bayesian inference to estimate the 
facies distribution and its associated uncertainty (Pendrel 
et al., 2006). 

Generally speaking, the use of elastic attributes derived 
from seismic inversion, when calibrated with well-log data, 
may improve the geologic interpretation (Pendrel, 2006). 
Major benefits of the direct comparison between well logs 
and seismic data are calibrating the inverted p-impedance 
volume, the possibility of producing facies volumes, and 
accounting for uncertainty in the interpretation.  

Facies logs of a certain cutoff are used to build probability 
density functions (PDF) of acoustic impedance values. The 
retrieved PDF's are then applied to the acoustic impedance 
volume recovered from inversion. The outputs are the 

probability cubes of each facies and the most- probable 
facies volume. 

We have applied the proposed workflow to study the 
Boonsville reservoir at the Boonsville Field, Fort Worth 
Basin, Texas, USA (Figure 1). Our goal is to predict the 
sand distribution and the main reservoir facies in the field.  
We have used a public domain dataset composed of a 3D 
PSTM seismic volume; the energy source used during 
acquisition was explosives and the processing bin size was 
33m x 33m with maximum offset of 2000m (Hardage et al 
1996). Density, sonic, gamma ray and resistivity logs of 
four wells were also provided. 

Boonsville Reservoir 
The lower Atoka Group reservoirs comprise fluvial and 
deltaic sandstones in a stratigraphic trap (Hentz et al., 
2012). 

The Boonsville gas field is by far the largest of the lower 
Atoka fields and is bounded by the Marble Falls limestone 
at its base and by the Caddo Limestone or Pregnant Shale 
at its top. These represent a transgressive sequence with 
dark shale and thin sections of conglomerates that have a 
variety of fine to coarse sandstones from well-cemented to 
porous (Huber & Lahti, 1982). 

 

Figure 1: Boonsville field and project area map (source 

Hardage et al. 1996) 



2 

AUTHORS (50 LETTERS MAXIMUM. FONT: ARIAL 9) 

  

Fifteenth International Congress of the Brazilian Geophysical Society 

Method 

We inverted the PSTM 3D seismic data to retrieve an 
acoustic impedance volume using the constrained sparse 
spike algorithm. Next, we applied a PDF designed from the 
well logs and Bayesian inference to generate facies 
probability volumes. 

The constrained sparse spike method assumes the 
seismic to be the convolution of a reflectivity time series 
with a wavelet with additive, non-correlated noise. The 
inversion solves for the reflectivity series given a wavelet 
and seismic traces. 

Debeye and Van Riel (1990) showed that the inversion 
problem could be addressed by minimizing a sum of Lp 
norms, one for the reflectivity and another for the noise, or 
the difference between seismic and synthetics generated 
by the convolution of the reflectivity and the wavelet. 

In the present work, the algorithm used minimized the sum 
of four Lp norms, one for the reflectivity or simplicity of the 
model, one for the noise, one for the spatial variability and 
one for the match with a prior low-frequency model. 

The employed wavelet was extracted using the reflectivity 
from well logs and the requirement to minimize the 
difference between the synthetics generated from well logs 
and the seismic traces near the wells. 

Due to the band-limited characteristic of the seismic data, 
the algorithm uses a low frequency model to constrain the 
frequencies not explained by the seismic. This model can 
be created in different ways and plays an import role in the 
results (Pendrel, 2015). In this work, we used a solid model 
created with the horizon interpretation and inverse distance 
interpolation of the acoustic impedance from the four wells.  

Once the inversion is finished and the proper quality 
controls are assessed, the next step is to perform Bayesian 
inference. To accomplish this, we need the acoustic 
impedance volume from seismic inversion, the PDF 
created using facies and acoustic impedance from well 
logs. To calculate the posterior distribution, we first 
estimated the priors based on the proportion of each facies 
from well logs and edit them to obtain geologically plausible 
most-probable facies volumes. In this meter, additional 
external information from conceptual models or potential 
methods can also be used (e.g. gravimetry). 

Results 

Acoustic seismic inversion deliverables are a p-impedance 
volume along with residuals or seismic synthetic difference 
generated with reflectivity from inversion convolved with 
the previous estimated wavelet. 

P-impedance inversion results are shown in an arbitrary 
section (figure 2). It is common to use the relative 
impedance results to quality control the match to wells; in 
this result no constraint to wells or prior models are applied. 

The result used in interpretation is the full-band p-
impedance shown in figure 3 with wells in overlay. 

 

Figure 2: Arbitrary sections passing through the four wells 

displaying relative p-impedance wells in overlay. Hot colors 
represent high impedances and cold colors low 
impedance.  

 

Figure 3: Arbitrary sections passing through the four wells 

displaying absolute p-impedance wells in overlay. Hot 
colors represent high impedances and cold colors low 
impedance.  

Signal-to-noise ratio and residuals maps can benefit the 
user during the interpretation where the areas with low 
signal to noise ratio and high residuals are of higher 
uncertainty compared to those of higher seismic quality 
and lower residuals. The inverted signal to noise ratio map 
(Figure 4) shows the lateral variation in seismic quality. 
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Figure 4: Signal to noise ratio map: cold colors represent 

areas where the ratios of residual energy over seismic 
energy are high.  

Lithology logs were created based on v clay logs derived 
from gamma ray logs. The sand facies were set to include 
all the clay volume values less than 0.4 while the shale 
facies were set for the values higher than 0.4 (figure 5) 

 

Figure 5: Clay volume well log in black and lithology log 

created, red is sand gray is shale 

The PDF used to create the sand occurrence volume were 
normal Gaussians fitted to histograms generated from well 
samples (Figure 6). 

 

Figure 6: PDF and Histograms from well log data, shale 

PDF in gray and sand PDF in red. There is a substantial 
overlap between both PDFs, this will result in higher 
uncertainty in the interpretation 

These PDFs applied to the p-impedance volume resulted 
in the probability of sand occurrence shown in figure 7, 
and most-probable facies volume (figure 8).  

 

Figure 7: Arbitrary section passing through the wells, hot 

colors represent high probability  of sand occurrence, well 
logs are overlain, gray is shale and red is sand 

 

Figure 8: Arbitrary section passing through the wells, 

most-probable facies volume, well logs are overlain, gray 
is shale and red is sand 

Both results show a fair match to sand occurrence in the 
wells. Places where the seismic to well synthetics match 
were not good will result in misclassification; this is due to 
mismatch in p-impedance values from inversion and p-
impedance from well logs. These intervals should be 
further investigated; the source of the mismatch can be due 
to problems in the seismic as well as problems with the well 
logs. In addition, we should expect that the inversion 
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results would not be able to map the thin sand that is way 
below tuning thickness due to the limitation in seismic 
resolution. 

Conclusions 

We have shown a method to integrate post stack seismic, 
well logs and structural interpretation in order to generate 
facies volumes and account for uncertainty in the process. 
The results obtained showed a reasonable match to the 
measured logs (within the seismic resolution). They 
represent benefits to the geologic interpretation since the 
results are themselves, a geologic model of the 
subsurface. The results can also be assessed to evaluate 
risk and uncertainty involved in the process by looking to 
the probability sand volumes and driving different 
scenarios from different PDF models. It is also good to 
mention that other inversion methods (i.e. AVO 
simultaneous Inversion) improve the results and add s-
impedance information with the requirements of angle or 
offset stack/gathers as input. 

 

Acknowledgments 

We would like to acknowledge CGG for providing 
software packages and the Bureau of Economic Geology, 
The University of Texas at Austin for providing the 
Boonsville 3-D seismic dataset. 

 
References 

Ambrose, W.A., Car, D.L., Hentz, T.F., 2012, Reservoir 
Systems of the Pennsylvanian lower Atoka Group (Bend 
Conglomerate), Northern Fort Worth Basin, Texas: High-
Resolution Facies Distribution, Structural Controls n 
Sedimentation and Production Trends. AAPG Bulletin, v. 
96, n. 7, p. (1301-1332), 2012. 
 
Carr, D.L., Hardage, B.A, Lancaster, D. E., Simmons, J.L., 
Elphick R. Y., Pendleton V.M., Johns R.A., 1996, 3-D 
Seismic Evidence of the Effects of Carbonate Karst 
collapse on Overlying Clastic Stratigraphy and Reservoir 
Compartmentalization. Geophysics, v. 61, n. 5, p. (1226 – 
1350), 1996. 

 
Debeye, H., Van Riel, P., 1990, Lp Norm Deconvolution, 
Geophysical Prospecting, v. 38., 1990. 

 
Huber, W.F., Lahti, V.R., 1982, The Atoka Group 
(Pennsylvanian) of the Boonsville Field Area, North Central 
Texas. Dallas Geological Society, p. (377-399), 1982 
 
Pendrel, J., 2001, Seismic Inversion – The Best Tool for 
Reservoir Characterization, CSEG Recorder, VOL. 26, 
NO. 01, 2001. 
 

Pendrel, J., 2015, Low Frequency Models for Seismic 
Inversions: Strategies for Success, SEG New Orleans 
Annual Meeting, p. (2703-2707), 2015 

 

Pendrel, J., Feroci, M., Mangat C., 2006, Using Bayesian 
Inference to Compute Facies-Fluids Probabilities (FFP), 
CSPG CSEG CWLS Convention, p. (278), 2006 

 

 

 

 

 

 

 

 

 

 


