

Métodos geoelétricos aplicados à mineralização aurífera na área da mineradora Piranema, Poconé - MT.

Robson Pereira Antunes Ramos (IG, UnB), Giovanni Augusto Câmara Santoro (IG, UnB), Gabriel Neves de Oliveira Samsoniuk (IG, UnB), André Calazans Evelim Coelho (IG, UnB), Welitom Rodrigues Borges (IG, UnB), Pedro Vencovsky Nogueira (IG, UnB), Eduardo Xavier Seimetz (IG, UnB) – Universidade de Brasília, Distrito Federal. antunesrobson@outlook.com

Copyright 2017, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 15th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August, 2017.

Contents of this paper were reviewed by the Technical Committee of the 15th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Brazilian Geophysical Society is prohibited.

1.Abstract

The present work shows the geoelectric methods of induced polarization in the time domain (TD) and frequency domain (FD) for the identification of auriferous mineralizations in the region of Poconé, Mato Grosso. The results generated by these methodologies were sections of electrorresistivity (ER), chargeability (IP), percentage of frequency effect (PFE) and metal factor (MF). The geophysical data were analyzed and integrated for the elaboration of the local geological model. The results were satisfactory and it was possible to identify 5 distinct regions for gold occurrence in the model.

2.Introdução

O município de Poconé encontra-se na província aurífera da Baixada Cuiabana, na porção centro sul do estado do Mato Grosso. Os primeiros relatos de ouro na Baixada Cuiabana datam do século XVIII, quando bandeirantes paulistas encontraram o metal nas margens do rio Coxipó e no córrego da Prainha. (Barbosa, 2008).

Atualmente, o município é explorado por pequenas e médias mineradoras, que investem em métodos tradicionais de pesquisas, tais como: sondagens rotativas e geoquímica para compreender e avaliar o potencial aurífero na região. Recentemente, as técnicas indiretas, disponibilizadas pela geofísica, vêm ganhando cada vez mais espaço entre os mineradores, pois possuem baixo custo e os resultados oferecem assinaturas geofísicas em função da característica composicional do mineral. Os depósitos auríferos associados a sulfetos, maciços ou disseminados, apresentam anomalias distintas em função dos métodos elétricos.

O contexto geológico regional conta com rochas do Grupo Cuiabá. O Grupo Cuiabá é dividido em três formações (figura 1): Formação Campina de Pedras (filitos, filitos grafitosos, intercalações de metarenitos com ciclos de Bouma incompletos, mármores calcíticos e meta- grauvacas feldspáticas), Formação Acorizal (depósitos rítmicos com intercalações subordinadas de metaritmitos com seixos caídos, quartzitos e metadiamictitos maciços) e Formação Coxipó (filitos conglomeráticos, metarenitos, quartzitos, mármores e metadiamictitos petromíticos). (Tokashiki e Saes, 2008).

Figura 1: proposta de empilhamento estratigráfico para a Faixa Paraguai (Tokashiki e Saes, 2008).

As litologias predominantes da área de estudo são filitos que apresentam granulação fina, as vezes homogêneos (figura 2-I) ou laminados (figura 2-II). São reconhecidos filitos sericíticos e filitos carbonosos. Outras litologias frequentes são metarenitos (figura 2-III), apresentam granulação média, preservada do protólito sedimentar. Ainda é observada uma intercalação de escala centimétrica de filitos sericíticos, filitos carbonosos e metarenitos, informalmente designada de metaritmito (figura 2-IV).

Figura 2: I- filitos carbonosos de coloração cinza escura, com laminação plano paralelas com aspecto mosqueado marcado por concreções de óxidos de ferros; II- Ritimito de camadas

milimétricas a centimetricas de filito fino intercaladas com metarenitos de areia fina, com veios de quartzo paralelos ao S0; III- Metarenito amarelado de areia fina a muito fina com quartzo buldinado.

O ouro está associado a sulfetos encontrados em veios de quartzo que preenchem fraturas, ou então disseminado nas rochas encaixantes próximas a essas estruturas. Em alguns depósitos da Baixada Cuiabana, notam-se três fases de deformação: as duas primeiras de direção NE são responsáveis pela geração dos veios de quartzo V1, chamados informalmente de "travessões" e a terceira de direção NW responsável pela geração dos veios de quartzo V2, chamada informalmente de "filões" (Silva, 2002).

A área de estudo encontra-se acerca de 16 km da cidade de Poconé (figura 3), inserida no contexto do lineamento Cangas-Poconé estendendo-se na direção NE, representa diferentes situações estruturais na Antiforma de Bento Gomes (Silva, 2002).

Figura 3: mapa geológico regional da Faixa Paraguaia. A estrela vermelha indica a localização da mineradora em estudo.

3. Metodologia

As seções de ER, PFE, MF e IP foram adquiridas com o eletrorresistivímetro Syscal Pro 72 (*Iris Instrumments*). Os dados foram adquiridos com a técnica do caminhamento elétrico. O arranjo escolhido para as seções foi o dipolo – dipolo, pois apresenta baixo acoplamento eletromagnético e é mais sensível a variações horizontais de resistividade, sendo indicado para identificar estruturas verticais como fraturas (Loke, 2016).

As seções possuem direção NW/SE com comprimento de 420 metros e espaçamento entre os eletrodos de 10 metros (figura 4). As coordenadas da linha estão disponíveis na tabela 1.

Figura 4: Mapa de localização da linha de aquisição geofísica, indicada pela seta branca, às margens da MT-060.

Tabela 1: Coordenadas da linha de aquisição geofísica.

Linha	Coordenadas Iniciais	Coordenadas Finais	Datum	Zona UTM
PNL1	543171mE	543495mE	WGS84	21S
	8218790mS	8218547mS		

Para a aquisição dos dados de ER (figura 5) utilizouse voltagem de 400 V entre os eletrodos de corrente. Adquiriu-se os dados em dois tempos distintos de injeção de corrente, 2 e 8 segundos, totalizando 628 medidas e 22 níveis de investigação para cada aquisição. Assim, foi possível gerar os produtos PFE e FM através das equações 1 e 2.

$$PFE = 100(\frac{\rho_{a0} - \rho_{a1}}{\rho_{a1}})$$
Equação (1)
$$FM = A\left(\frac{\rho_{a0} - \rho_{a1}}{\rho_{a0} \rho_{a1}}\right)$$
Equação (2)

Onde $\rho_{a0} e \rho_{a1}$ correspondem as resistividades aparentes medidas em baixas e altas frequências, respectivamente.

Figura 5 - Aquisição de dados de RES com tempos de injeção de corrente distintos para elaboração dos produtos PFE e MF.

A aquisição dos dados de IP (figura 7) foi realizada com voltagem de 800 V entre os eletrodos de corrente. Utilizou-se tempo de injeção de corrente de 4 segundos, totalizando 345 medidas e 10 níveis de investigação obtidos.

Figura 7 – Aquisição de dados de IP com Syscal Pro 72.

O processamento dos dados ocorreu nos softwares Prosys II da Iris Instrument e no RES2DINV da GEOTOMO software. O Prosys II foi utilizado para retirar dados inconsistentes do levantamento através da análise dos valores da resistência de contato, corrente, resistividade e curva de decaimento IP (figura 8).

Figura 8 – Curvas do efeito IP, espera-se curvas de decaimento exponencial.

No RES2DINV, fez-se a remoção de ruídos sistemáticos e aleatórios com as ferramentas *Remove Bad Data Points* (figura 9) e *RMS error statistics* (figura 10).

Figura 9 – As elipses em vermelho retratam alguns dos ruídos sistemáticos presentes na aquisição de resistividade.

Figura 10 – Distribuição de erro entre os valores de resistividade medido e calculado (%)

Para determinar a distribuição em subsuperfície da resistividade elétrica verdadeira é necessário a técnica de inversão (Loke, 2015). O software RES2DINV utiliza o método matemático dos mínimos quadrados para fazer a inversão por suavização dos dados (Fachin, 2007). A inversão por mínimos quadrados utiliza o método de otimização por mínimos quadrados de Gauss-Newton (Loke e Barker, 1996). Dessa forma, foi possível obter o modelo de resistividade e cargabilidade representativo do meio (figura 11).

Figura 11 – seções de resistividade medida (acima), calculada (centro) e inversa (abaixo) obtidos após o procedimento de inversão no software RES2DINV.

4. Resultados

A seção de ER (figura 12) foi obtida por 5 iterações apresentando erro RMS final de 39,5%, com valores de resistividade de 14,2 Ohm.m a 12814,1 Ohm.m. Esse dado foi o maior responsável pela delimitação de estruturas e identificação de litologias para o modelo geológico.

A seção de IP (figura 13) foi obtida por 5 iterações apresentando erro RMS final de 7,1% com valores de cargabilidade de 0.10 mV/V a 72mV/V. Essa seção foi utilizada para identificar as principais zonas mineralizadas (figura 13)

O perfil obtido pelo PFE (figura 14) foi gerado por 5 iterações apresentando erro RMS final de 20,6%, o intervalo de valores observado vai de 0.01% a 134.1%. O perfil de MF (figura 15) foi gerado por 6 iterações apresentando erro RMS final de 126,5% e intervalo de valores da ordem de 1,56 1/ohm.m a 7106,8 1/ohm.m. Esses produtos auxiliaram na elaboração do modelo geológico final, sendo utilizados para confirmar hipóteses de estruturas geológicas e mineralizações observadas nas seções de ER e IP.

As anomalias e feições observadas nas seções foram correlacionadas na figura 16 para, posteriormente, gerar um modelo geológicogeofísico.(figura 16 a).

O modelo apresenta 3 camadas geoelétricas. A camada em vermelho (figura 16 b) representa o solo, atingindo até 10 metros de profundidade e resistividade de 2710 até 4700 Ohm.m. A camada cinza claro (figura 16 b) ilustra a zona de intemperismo, assim definido devido a baixa resistividade observada com valores de 38 a 90 Ohm.m, e encontra-se no intervalo de 4 a 30 metros de profundidade. A camada cinza escura (figura 16 b) representa a rocha sã, devido a alta resistividade observada de 191 a 950 Ohm.m, e se localiza no intervalo de 20 a 62,3 metros, composta por uma intercalação de metarenito e filito. Além das camadas, 5 estruturas verticais foram delimitadas na figura 16 b, posicionadas em 75, 150, 240, 295 e 365 metros e resistividades próximas de 80 Ohm.m, essas feições são compatíveis espacialmente com as anomalias de IP, MF e PFE (figura 16 c, d, e) sugerindo ocorrência de veios de quartzo sulfetados nessas regiões.

5. Conclusões:

Devido ao espaçamento de eletrodos utilizado, não foi possível a distinção precisa entre os litotipos, sugerese a escolha de espaçamentos menores para tal finalidade.

O método da ER foi eficaz na detecção de estruturas verticalizadas. As anomalias dos perfis de IP, PFE e MF apresentam boa correlação espacial com essas estruturas. Isso foi determinante para inferir zonas anômalas, relacionadas a fraturas preenchidas por quartzo com sulfetos. A análise conjunta dos resultados adquiridos pela RES, IP, PFE e MF possibilitou a

formulação de um modelo geológico-geofísico condizente com a geologia local.

6. Referências Bibliográficas:

BARBOZA, E. S. 2008. Gênese e controle estrutural das mineralizações Auríferas do Grupo Cuiabá, na Província Cuiabá - Poconé, centro Sul do Estado de Mato Grosso – Brasil. Tese (Doutorado)- Universidade do Estado do Rio de Janeiro,2008.

FACHIN, S. J. S. 2007. Ensaios geoelétricos 2D no antigo lixão de Ribeirão Preto - SP: avaliação de parâmetros de aquisição e monitoramento ambiental do problema. Dissertação de mestrado, Universidade de São Paulo, Ribeirão Preto - SP,Brasil.

LOKE M.H., BARKER R.D.,1996. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131-152.

LOKE, M.H., CHAMBERS, J.E., RUCKER, D. F., KURAS, O., WILKINSON, P. B., 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135-156.

LOKE, M.H. 2015. Tutorial: 2-D and 3-D electrical imaging surveys. 177p.

SILVA, C. H., SIMÕES, L. S. A., RUIZ A. S. 2002. Caracterização estrutural dos veios auríferos da região de Cuiabá, MT. Revista Brasileira de Geociências, 32:407-418.

TOKASHIKI C.C., SAES G.S. 2008. Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, Baixada Cuiabana, Mato Grosso. *Revista Brasileira de Geociências*, 38(4):661-675.

Figura 12 - seção de eletrorresistividade, arranjo dipolo-dipolo, espaçamento de eletrodos de 10 metros.

Figura 13 – seção de polarização induzida, arranjo dipolo-dipolo, espaçamento de eletrodos de 10 metros.

Figura 14 - seção de porcentagem de efeito de frequência, arranjo dipolo-dipolo, espaçamento de eletrodos de 10 metros.

Figura 15 – seção de fator metal, arranjo dipolo-dipolo, espaçamento de eletrodos de10 metros.

Figura 16 - Análise de dados e correlação de anomalias encontradas nas seções de eletrorresistividade (b), polarização induzida (c), fator metal (d) e porcentagem de efeito de frequência (e), para elaboração do modelo geológico-geofísico (a)