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Abstract   

In time-lapse feasibility studies one of the objectives is to 
test the impact on the image of different production 
scenarios to determine the optimal timing between time-
lapse seismic monitoring experiments. The ability to 
model illumination variations due to a complex 
overburden as well as the acquisition geometry benefits 
such analysis. We show that point-spread-function-based 
forward modeling allows incorporation of such variations 
into the modeled images. The point-spread functions are 
here calculated using the two-way wave-equation and can 
thus be used to model images as if they were obtained 
using RTM. We illustrate the method using 2D synthetic 
examples with mild velocity variations. Because point-
spread-functions have a finite extent, the method can 
efficiently forward model images from a changing 
reflectivity model. The method is expected to benefit time-
lapse feasibility studies for pre-salt reservoirs offshore 
Brazil, because such reservoirs are buried underneath a 
complex overburden and illuminated using imperfect 
acquisition geometries. 

Introduction 

Time-lapse (4D) seismic data plays an important role in 
production monitoring of hydro-carbon reservoirs (e.g., 
Hatchell et al., 2002 and Formento et al., 2007). In 4D 
feasibility studies, simulator-to-seismic workflows are 
routinely used to estimate the seismic response due to 
changes in the reservoir models. These simulators can 
help decide the optimal timing for 4D monitoring seismic 
surveys and update the reservoir parameters (porosity, 
saturation and pressure) so that they match the 4D 
seismic data as well as the production history (Allo et al., 
2013). 

To calculate the synthetic seismic traces, forward 
modeling is currently mostly based on a 1D convolution of 
the reflectivity model with a stationary or space-variant 
wavelet to generate synthetic traces in the time domain. 
The advantage of this method is its computational 
efficiency (Toxopeus et al., 2008). Historically, this 
facilitated the use of computationally expensive non-linear 
inversion algorithms to invert seismic images for detailed 
reservoir models.  

The 1D convolutional method, however, is strictly valid for 
horizontally layered models only (e.g., Lecomte, 2008 and 

Lecomte et al., 2016) and models the seismic data in the 
time-domain. In order to overcome this limitation, knowing 
that computational power has substantially improved over 
the past decades, Lecomte (2004 and 2008) and 
Toxopeus et al. (2008) devised a depth-domain method 
using multi-dimensional filtering with point-spread 
functions (PSFs). A PSF determines what a point in the 
reflectivity model looks like in the image domain. It 
incorporates the illumination variations due to a complex 
overburden (i.e. the velocity model) and acquisition 
geometry. Because the PSFs are calculated in the depth-
domain they also incorporate the changing wavelength 
due to the changing velocity. 

PSFs can be calculated in various ways using, e.g., ray-
tracing, one-way modeling operators, or two-way wave-
equation-based operators. In the context of time-lapse 
forward modeling of seismic images from changes in 
reservoir parameters, it is preferable to calculate the 
PSFs using the same operators that are used to calculate 
the image from the field data. In that way the forward 
modeling becomes imaging-consistent. 

The concept of a PSF has its roots in model resolution in 
inverse theory (e.g., Parker, 1994). In seismic 
imaging/inversion an early use of it can be found in 
Humphreys et al. (1984) who used it to de-blur a 
tomographic image. Recently it has been used in the 
context of inverting for elastic parameters in reservoir 
characterization studies (Fletcher et al., 2012, Archer et 
al., 2013 and Letki et al., 2015), as well as to perform de-
ghosting in the image domain (Caprioli et al., 2014 and 
Caprioli et al., 2015). 

In this paper, we present an example of forward modeling 
of time-lapse post-stack depth-domain seismic images 
using PSFs. The PSFs are here calculated using two-way 
wave-equation-based modeling and migration operators, 
using the method from Fletcher et al. (2012). The 
example we show highlights the ability of the method to 
incorporate illumination variations due to the acquisition 
geometry and the velocity model, into the forward 
modeling of a time-lapse seismic response from a 
changing reservoir. We anticipate this method to be 
beneficial for 4D feasibility studies of pre-salt reservoirs 
off-shore Brazil, because these reservoirs are buried 
underneath a complex overburden of salt and carbonates 
and imaged using acquisition geometries with imperfect 
illumination (such as narrow-azimuth streamer 
acquisitions).  

Method 

Based on a single scattering assumption (i.e. Born 
modeling), the dependence of the data on the reflectivity 
can be written as 
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 𝑑 = 𝑀 𝑟 (1) 

where 𝑟 is a vector holding the reflectivity, 𝑑 is a vector 
holding the data, and 𝑀 is the single scattering (i.e. Born) 
modeling operator. The modeling operator depends on 
both the background velocity model as well as the 
acquisition geometry. The migration operator can be 
written as 𝑀*, where the star denotes the adjoint 
operator. Hence, the estimated reflectivity after migration 
can be written as 

 𝑟 = 𝑀∗ 𝑑 (2) 

where 𝑟 denotes the estimated reflectivity (i.e. the image). 
Using equation (1) we then get 

 𝑟 = 𝑀∗𝑀 𝑟 ∶= 𝐻 𝑟 (3) 

where we defined 𝐻: = 𝑀*𝑀. The operator 𝐻 is known as 
the Hessian operator. Equation (3) determines the 
relation between the actual reflectivity 𝑟 in the earth and 
the estimated reflectivity 𝑟 obtained after migration. 

Writing the reflectivity 𝑟 as a weighted sum of point-
scatterers 𝑟! = 𝑟!𝛿!"! , with 𝛿!" the Kronecker delta 
function, we find that the estimated reflectivity 𝑟 can be 
written as 

 𝑟! = 𝑟!𝑃!"!   (4) 

where we defined the PSF 𝑃!" as  

 𝑃!" = 𝐻!"𝛿!"!  , (5) 

which shows that the PSF at location 𝑖 in the model, due 
to a point-scatterer at location 𝑗 in the model, equals the 
𝑗-th column from the Hessian matrix. Equation (4) 

indicates that the estimated reflectivity can thus be 
modeled as a weighted sum of PSFs (Lecomte, 2004 and 
Toxopeus et al., 2008).  

The Hessian depends only on the modeling operator and 
its adjoint. Given that the modeling operator depends on 
the background velocity model and the acquisition 
geometry, but not on the reflectivity model, it follows that 
the PSF is independent of the reflectivity model. This is a 
direct result of the Born modeling in equation (1). This 
implies that the PSF only needs to be calculated once for 
a given background velocity model and acquisition 
geometry, but does not need to be updated when the 
reflectivity model changes (Toxopeus et al., 2008). That 
means that given a base reflectivity 𝑟! and a reflectivity 
perturbation ∆𝑟, we can model the image 𝑟!  from the 
perturbed reflectivity using  

 𝑟!! = 𝑟!! + ∆𝑟!𝑃!"!  . (6) 

This makes the method particularly attractive for 
inversion-based methods such as reservoir 
characterization. Equation (6) implies that the image due 
to a changing reflectivity model can be updated using a 
local calculation only. Changes in the acquisition 
geometry as well as the (background) velocity model, 
however, would require re-calculation of the PSFs.  

The challenge is the efficient calculation of the PSF since 
it requires, in principle, one wavefield modeling as well as 
one migration for each point in the reflectivity model. This 
means that the computation of the PSF would cost as 
many imaging and wavefield modelings as there are 
points in the reservoir model, making it prohibitively 
expensive. We address this challenge using the method 

 
 
Figure 1 – Velocity model used for this study. The salt overhang is used to create illumination variations in the area below 
the salt compared to areas not underneath the salt. Furthermore, a “platform” obstruction was used as an area without any 
sources and receivers, to create further illumination variations due to obstructions in the acquisition geometry. The inset 
PSFs highlight the illumination variations for an area below (right) and not below the salt (left). 
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of Fletcher et al. (2012) that calculates the PSFs for a 
sparse set of points in the model (sparse enough such 
that their PSFs interfere only negligibly), followed by 
interpolation. Hence, the cost of the calculation of the 
PSFs is just one wavefield modeling, one migration, 
followed by interpolation. Because in this paper we focus 
on post-stack forward modeling only, the interpolation is 
done after stacking. 

Results  

Figure 1 shows the 2D synthetic velocity model that was 
used throughout this work. The velocity contrasts in this 
model are realistic, as they were modeled based on 
observations from field data. We used a salt body to 
introduce illumination variations due to the velocity model. 
Therefore, as we go from left to right in the subsurface, 
illumination is varying from good illumination to poorer 
illumination. This is highlighted by the PSFs. Furthermore 
the model contains three low impedance areas inside the 
dashed box that simulate hydrocarbon reservoirs.  

Figure 2 shows PSFs from a uniform grid of point 
scatterers in the area indicated by the white box in Figure 

1. The changing shapes and amplitudes of the PSFs as a 
function of position indicate that the illumination is 
changing quite rapidly in this area. These PSFs are the 
result from one modeling followed by a migration of a 
uniform grid of point scatterers. These PSFs form the 
input to the interpolation to obtain PSFs for each point in 
the model.  

To estimate the accuracy of the interpolation we 
calculated a benchmark set of PSFs where one PSF was 
explicitly calculated for each point in the model using 
many forward modelings and migrations. Then these 
benchmark PSFs were compared to the interpolated 
PSFs. To quantify the error in the interpolation we used 
the RMS difference between the interpolated and 
benchmark PSFs, and compared that to the RMS of the 
benchmark PSF at that location.  Figure 3 shows the 
resulting percentage errors for each point in the model in 
the area indicated by the dashed black box in Figure 1. 
Overall the errors are small indicating a good quality 
interpolation. 

To verify that PSFs can model seismic data including 
illumination variations, we compared an image obtained 
using 1D convolution with that from PSF-based forward 
modeling. Figure 4a shows again the velocity model from 
the area inside the dashed black box inside Figure 1. 
Figure 4b shows the result of migrating the modeled 

 
Figure 3 – Interpolation error for the area indicated by the 
black dashed line in Figure 2. Overall the quality of the 
interpolation is very high throughout the whole area. 
Where the illumination changes relatively rapidly, some 
small errors can be observed. 
 

 
 
Figure 4 – Velocity model zoom from the area indicated 
by the dashed black line in Figure 1 (a), image obtained 
using RTM (b), 1D convolutional forward modeling (c), 
and PSF-based forward modeling (d). 
 

 
 
Figure 2 – PSFs from a uniform grid of point scatterers 
in the area indicated by the white box in Figure 1.  
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synthetic data using reverse-time migration. This image 
serves as a reference to gauge the accuracy of the PSF-
based forward modeling method. We highlight two areas 
to analyze the differences between both methods. In the 
area indicated by the green dashed ellipse, we observe 
strong amplitude changes due to illumination variations. 
Furthermore, in the area indicated by the black dashed 
ellipse, we see small scale reflectivity in the image due to 
low velocities and thus a changing wavelength. 

Figures 4c and 4d show the result from the 1D 

convolution using a stationary wavelet and the PSF-
based forward modeling, respectively. When comparing 
both methods to the RTM image (cf. Figure 4b), it is clear 
that the PSF-based forward modeling accurately models 
both the illumination variations as well as the changes in 
resolution due to the changes in wavelength. Of course 
the 1D convolution cannot model any illumination 
variations as it is not aware of the salt in the overburden. 
Furthermore, because 1D convolution was here done 
using a stationary wavelet, it is unable to model any 
differences in resolution due to changes in wavelength. 

To further highlight the ability from the PSF-based forward 
modeling to capture the illumination variations, we 
extracted the amplitude along a thin reservoir indicated by 
the black lines in Figure 4a. The amplitudes are shown in 
Figure 5 for the RTM image (black line), the 1D 
convolution (blue line) and the PSF-based forward 
modeling (red line). Clearly the amplitude resulting from 
the PSF-based forward modeling accurately captures the 
illumination variations present in the RTM image, while 
the 1D convolutional method does not. 

The ability of the PSF-based forward modeling to model 
the illumination variations is expected to be useful for 
time-lapse feasibility studies. In this case, one wishes to 
know the impact on the seismic image from a change in 
the reservoir parameters. In order to simulate this, we 
slightly perturbed (3%) the impedance model in a small 
area around the thin reservoir (see the dashed white line 
in Figure 6a). In order to further test the ability from the 
PSF-based forward modeling to model illumination 
variations, a “platform” obstruction was simulated as an 

 
 
Figure 5 – Amplitude extracted along the thin reservoir 
indicated by the black arrows in Figure 4a for the RTM 
image (black), 1D convolution (blue) and the PSF-based 
forward modeling (red). 

 
 
Figure 6 – Impedance model with a small perturbation 
(3%) in the area around the thin reservoir indicated by the 
white dashed line (a), image obtained using RTM (b), 1D 
convolutional forward modeling (c), and PSF-based 
forward modeling (d). 

 
 
Figure 7 – 3% impedance perturbation in the thin 
reservoir around the area indicated by the white dashed 
line in Figure 6 (a), image perturbation from RTM (b), 1D 
convolution (c) and PSF-based forward modeling. 
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area without any sources or receivers (see Figure 1). In 
this way illumination differences due to acquisition 
variations are introduced on top of illumination variations 
due to the salt body, i.e. due to the velocity model. 
Comparing Figures 6b, 6c and 6d, it is clear that the PSF-
based forward modeling now accurately captures both 
illumination variations due the acquisition geometry and 
the velocity model, while the 1D convolutional method 
does not. The resulting time-lapse differences in Figure 7 
shows the same result. The image perturbation from the 
1D convolutional method not only has the wrong 
wavelength, i.e. wrong resolution, but does not capture 
any illumination variations. We mention that due to the 
local nature of the PSF, forward modeling can be done by 
updating the image only in places where the reflectivity 
changes. 

Discussion 

The velocity model used contains mostly mild velocity 
variations. Combined with the perturbation in the 
acquisition geometry, however, the modeled data 
contained substantial illumination variations and the 
interpolation of the PSFs was able to accurately 
interpolate these (see Figures 2 and 3). It should be 
noted, however, that we did not consider what happens 
close to salt-sediment boundaries where we will 
encounter sharp velocity contrasts. We anticipate that 
close to such sharp boundaries the interpolation will be 
more challenging. The current interpolation method is not 
limited to 2D and can be extended to 3D. 

Conclusions 

Using 2D synthetic examples we have shown that post-
stack seismic images can be modeled using a weighted 
sum of PSFs. The PSFs have been calculated using two-
way wave-equation-based methods, and as such can 
efficiently forward model images from a (changing) 
reflectivity model as if they were obtained using RTM. 
Therefore, when using this forward modeling in reservoir 
characterization studies where the field data is migrated 
using RTM, the reservoir characterization becomes 
indeed imaging-consistent.  

We have demonstrated that the method allows to 
accurately model illumination variations due to either a 
complex velocity model or the acquisition geometry. 
Furthermore it is able to capture resolution variations due 
to velocity variations in the model. As such the method is 
superior to the conventional 1D convolutional method that 
is not able to capture any such variations. We have 
confirmed these results in a time-lapse setting. Therefore 
the PSF-based forward modeling will benefit time-lapse 
feasibility studies for the pre-salt reservoirs offshore 
Brazil, where the targets are buried underneath a 
complex overburden and often illuminated using different, 
not necessarily repeatable, acquisition geometries. 
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