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Abstract 

By means of the hyperbolic traveltime approximation, t
finite-offset Common Reflection Surface (FO CRS) 
method is capable to simulate arbitrary offset seismic 
sections by stacking prestack seismic data
traveltime surfaces. In order to reconstruct seismic 
reflection events in common-offset sections, the 
CRS traveltime approximation depends on five kinematic 
attributes (or CRS parameters) for each selected point of 
the seismic section. The main challenge of this method is 
to provide a computationally efficient data
for accurately determining the best set of 
parameters. For comparison, we apply
strategies for simultaneously estimating the five 
parameters from prestack seismic data
Very Fast Simulated Annealing (VFSA)
Differential Evolution (DE) global optimization algorithm
For one sample point of the common-offset sec
simulated, we compare the performance of both 
algorithms in respect to the efficiency and accuracy for 
estimating the five FO CRS parameters.
optimization algorithms on real seismic data
the potential of them to enhance the reflection events in 
noisy data, even with very low signal-to-

Introduction 

Several macro-model velocity independent seismic 
stacking methods were introduced in the 
simulating zero-offset sections from prestack seismic 
data. All these methods use a paraxial approximation of 
reflection traveltimes around the normal central ray
Zhang et al. (2001) developed a 2-D hyperbolic traveltime 
approximation for paraxial rays near to 
reflection central ray (Figure 1) as a func
parameters. Two parameters at the source position, 
the start angle,	��, and wavefront curvature, 
starting at the reflection point and three para
receiver position, i.e. the emergence angle,
wavefront curvatures �� and �� of two wave
the source and reflection point, respectively
parameters are used to define the stacki
approximates reflection events in the vicinity of a finite
offset central ray in midpoint and half-
(Figure 2).  
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By means of the hyperbolic traveltime approximation, the 
urface (FO CRS) 

capable to simulate arbitrary offset seismic 
sections by stacking prestack seismic data along paraxial 

In order to reconstruct seismic 
offset sections, the 2-D FO 

traveltime approximation depends on five kinematic 
parameters) for each selected point of 

n. The main challenge of this method is 
to provide a computationally efficient data-driven strategy 
for accurately determining the best set of CRS 

apply two optimization 
for simultaneously estimating the five 

eters from prestack seismic data, the so-called 
(VFSA) and the 

optimization algorithms. 
offset section to be 

e compare the performance of both 
the efficiency and accuracy for 

estimating the five FO CRS parameters. We applied both 
real seismic data and showed 

to enhance the reflection events in 
-noise ratio. 

model velocity independent seismic 
stacking methods were introduced in the last years for 

from prestack seismic 
All these methods use a paraxial approximation of 

reflection traveltimes around the normal central ray.  
D hyperbolic traveltime 

to the finite-offset 
function of five CRS-

wo parameters at the source position, i.e. 
, and wavefront curvature, ��, of a wave 

and three parameters at the 
the emergence angle,	��,and the 

waves that start at 
lection point, respectively. The five 

stacking operator that 
reflection events in the vicinity of a finite-

-offset coordinates 

The finite-offset CRS stack method has been used for 
simulating finite-offset seismic sections in the common
shot, common-midpoint and common
configurations (Bergler et al
2002; Boelsen and Mann,  2005; Höcht 
example, summing up coherent events along the stacking 
operator and assigning the result to the 
of a finite-offset central ray, 
for all points in a chosen common
the simulation of common-offset seismic data. 

The FO CRS stack method needs very good estimates of 
the CRS-parameters from prestack data. The optimization 
problem of the FO CRS stack consists of searching for 
the best five CRS-parameters, in the sense of opti
the coherence function, i.e. the objective function, without 
a priori information of the macro
the near surface velocity.  

Zhang et al. (2001) estimated the five finite
attributes by splitting the optimization problem into three 
steps and using simplified traveltime 
three seismic configurations, namely, common
(CMP), common-offset (CO) and common
They applied a grid search method to determine two 
coefficients in the CMP gathers 
coefficients in the CO stacked gather 
fifth coefficient 	
��� in the CS gather. From these 
coefficients, for all samples of the target common
section are calculated the five C
the common-offset stacked section is simulated from 
multi-coverage prestack data.

Usually, the grid search is computationally very
method; on the other hand,
attributes in several steps causes 
in low fold and noisy datasets.
function of the finite-offset CRS stack method is 
multimodal and multidimensional, the optimization 
problem has no unique solution meaning that it is 
necessary to look for the g
(2016) presented the application of global optimization 
algorithm VFSA to search for simultaneously the
parameters of the 2-D FO CRS stack method

The aim of this work is to analyze the performance of the 
VFSA algorithm in searching for the optimal 
attributes and to simulate common offset sections from 
multi-coverage seismic data compared to another global 
optimization algorithm called Differential Evolution
applications of the finite-offset CRS stack
real data, we do not use any a priori information and the 
initial solution or starting point for global optimization was 
generated randomly. 
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offset CRS stack method has been used for 
offset seismic sections in the common-
midpoint and common-offset data 

et al. 2002; Zhang et al. 2001 and 
; Boelsen and Mann,  2005; Höcht et al. 2009). For 

example, summing up coherent events along the stacking 
operator and assigning the result to the time sample point 

offset central ray, and repeating this operation 
for all points in a chosen common-offset section, yields 

offset seismic data.  

CRS stack method needs very good estimates of 
m prestack data. The optimization 

CRS stack consists of searching for 
parameters, in the sense of optimizing 

the coherence function, i.e. the objective function, without 
a priori information of the macro-velocity model, except of 

 

(2001) estimated the five finite-offset CRS-
attributes by splitting the optimization problem into three 
steps and using simplified traveltime approximations for 
three seismic configurations, namely, common-midpoint 

offset (CO) and common-shot (CS). 
They applied a grid search method to determine two 

in the CMP gathers 	
���, 
����, other two 
stacked gather 	
��, 
���, and the 
in the CS gather. From these 

for all samples of the target common-offset 
section are calculated the five CRS-parameters, and then 

offset stacked section is simulated from 
coverage prestack data. 

computationally very expensive 
; on the other hand, the determination of the CRS 

attributes in several steps causes cumulative error, mainly 
in low fold and noisy datasets. Because the objective 

offset CRS stack method is 
multimodal and multidimensional, the optimization 
problem has no unique solution meaning that it is 
necessary to look for the global minimum. Garabito et al., 

presented the application of global optimization 
algorithm VFSA to search for simultaneously the five 

CRS stack method. 

The aim of this work is to analyze the performance of the 
in searching for the optimal five CRS-

attributes and to simulate common offset sections from 
coverage seismic data compared to another global 

lled Differential Evolution. For 
offset CRS stack in synthetic and 

real data, we do not use any a priori information and the 
initial solution or starting point for global optimization was 
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Figure 1: Central ray (��	�	��) and paraxial ray (
in earth stratified model. 

Theoretical aspects    

For a central ray that starts at S with initial velocity
start angle  ��, reflects at R in the subsurface, and 
emerges at the surface in G with final velocity 
emergence angle ��  (Figure 1); considering 
the traveltime of the finite-offset paraxial ray
finite-offset CRS stacking operator, 
(Zhang et al. 2001), 

����� � ��� � � �
�� 	
�Δ"# � 
�Δ$�%� � �&���

'�&��� 	(
) ' 
*+Δ$� � 2�&��� (
) � 
*+Δ"#
by considering the relationships:  


� � sin 	�� � sin 	�� , 
� � sin 	�� ' sin �3��,  		
� � �123��� , 
) � ��123���	  and

In Figure 2 the traveltime along the reflected central ray 
from S to G is ��, while the source S and receiver 
horizontal coordinates, "� and	"� . The 
and  $� � 	"� ' "��/2  are the midpoint and the half
of the central ray, respectively. The midpoint 
offset $ correspond to the coordinates of the source and 
receiver positions of an arbitrary paraxial ray with finite
offset. The quantities Δ"# � "# ' "� 
correspond to the midpoint and half-offset displacements 
of the paraxial ray  5̅789̅ with respect to the coordinates of 
the central ray SRG.  

By considering the same central ray S 
2, the wavefront curvature �� is obtained
reflection/transmission law in a common
and evaluated at the receiver position,
are obtained by applying the transmission law f
hypothetical point source at the reflection point 
evaluated, respectively, at the initial and final positions of 
the central ray in common-midpoint configuration.

In order to compare the finite-offset CRS stacki
operator and the multicoverage ray theoretical 
traveltimes, we consider a central ray in the synth
model in the lower part of Figure 2 constituted of two 
homogeneous layers over a half-space separated by 
curved and smooth interfaces with velocities 
= 1500 m/s, v1 = 2600 m/s and 
respectively. 
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) and paraxial ray (��888	:;	��8888) 

with initial velocity <= and 
in the subsurface, and 

with final velocity <> and 
considering <= � <> � <�,  

offset paraxial ray, so-called 
 is expressed by 

� �
� 	(
� ' 
)+Δ"#�  

+ #Δ$.                 (1) 

�� , � � 4�� '
and   
* � ��123��� . 

In Figure 2 the traveltime along the reflected central ray 
and receiver G have 

. The "� � 	"� � "��/2  
are the midpoint and the half-offset 

of the central ray, respectively. The midpoint "# and half-
correspond to the coordinates of the source and 

eiver positions of an arbitrary paraxial ray with finite-
 and Δ$ � $ ' $� 

offset displacements 
with respect to the coordinates of 

 to G in the Figure 
obtained using the 

reflection/transmission law in a common-shot experiment 
, while �� and ��  

d by applying the transmission law for a 
at the reflection point and 

at the initial and final positions of 
midpoint configuration. 

offset CRS stacking 
operator and the multicoverage ray theoretical 
traveltimes, we consider a central ray in the synthetic 

constituted of two 
space separated by 

curved and smooth interfaces with velocities vS = vG = v0 
= 2600 m/s and v2 = 3700 m/s, 

 
 
 
 
 
 
By using the ray-tracing algorithm
1988), we calculate the reflection traveltimes for several 
common-offset configurations
as the angles �� and ��  associated to a central ray 
the upper part of Figure 2, the blue curves represent the 
common-offset traveltimes of primary reflections 
associated to the second reflector and the red curves 
represent the CRS operator obtained by equation (1).  
Depending on the seismic configuration, we have the 
necessary adaptation of the finite
approximation given by equation (1), i.e. for common
source , ∆"# � ∆$, for common
common-receiver, ∆"# �∆$ � 0.  
FO CRS parameters optimization problem 

Because our objective is 
seismic section from multicoverage seismic data, the 
optimization problem consists of finding the five finite
offset CRS parameters represented by the parameter 
vector	C � 	�� , ��, ��, ��, ��
then used for calculating the finite
operator by equation (1). 

The semblance function (Neidell and Tane
coherence measurement defined as the normalized ratio 
between the time-window accumulated energy after the 
summation of all traces and the time
energy of all summed traces. It is expressed by: 

5	C; "E, �F� �

Figure 2: Constant velocity layered model
ray SRG. The blue curves are the common
reflection traveltimes for the second reflector. The red 
curves define the FO CRS 
the point G�.. 
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tracing algorithm (Červený and Pšencik, 
, we calculate the reflection traveltimes for several 

offset configurations and ��, �� and ��, as well 
associated to a central ray . In 
, the blue curves represent the 

offset traveltimes of primary reflections 
associated to the second reflector and the red curves 

ator obtained by equation (1).  
Depending on the seismic configuration, we have the 
necessary adaptation of the finite-offset CRS 
approximation given by equation (1), i.e. for common-

, for common-midpoint ,   ∆"# � 0,   for '∆$, and for common-offset, 

optimization problem  

 to simulate the common-offset 
seismic section from multicoverage seismic data, the 
optimization problem consists of finding the five finite-
offset CRS parameters represented by the parameter ���H. These five parameters are 
then used for calculating the finite-offset CRS stacking 

(Neidell and Taner, 1971) is a 
coherence measurement defined as the normalized ratio 

window accumulated energy after the 
summation of all traces and the time-window accumulated 
energy of all summed traces. It is expressed by:  

� � �
I
∑ K∑ LM,N	M�OMPQ RSN
∑ ∑ LM,N	M�TOMPQN .                      (2) 

Constant velocity layered model and central 
e blue curves are the common-offset 

reflection traveltimes for the second reflector. The red 
FO CRS stacking operator referred to 
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The value UV,&	V� represents the amplitude of the seismic 
trace indexed by	W � 1,2, … Z, with L equals the number of 
seismic traces of the stacking surface. In the time 
window, the stack curve �	W� � ����	
�, 
�, 
� , 
), 
*; ∆"#V , ∆$V� localizes the 
amplitudes according to finite-offset CRS traveltime 
approximation given by equation (1), where ∆"#V � "#V '"� and ∆$V � $V ' $�. 
The finite-offset CRS optimization problem is to search-for 
the optimal parameter vector C which minimizes the the 
objective function, i.e. the negative of semblance function 5	C� in equation (2) for a triple 	"�, $�, �F�. It is a typical 
nonlinear, multidimensional, and multimodal optimization 
problem. For conflicting dip events the objective function 
is multimodal and it has the same number of local minima 
as the crossing events, but the event that has the highest 
energy will correspond to the global minimum. Therefore, 
although the objective function is multimodal, there is 
always a prominent global minimum especially when it is 
associated to only one reflection event. 

In order to study the convergence behavior and selecting 
the control parameters of the VFSA and DE algorithms, a 
multi-coverage synthetic reflection dataset was generated 
using a ray tracing program of the SW3D Consortium, for 
the model in the lower part of Figure 2. The parameters of 
the dataset are:  Length of the seismic line: from 0 to 
5000m. First and last shots locations: 2000m and 5000m. 
Number of shots: 121. Number of receivers: 81. Interval 
between shots: 25 m. Interval between receiver stations: 
25 m. Minimum and maximum offsets: from 0m to      
2000m. Time sample interval: 4 ms. Record length: 2 sec. 
For the optimizations tests and simulating of a CO 
stacked section, in the dataset was applied a gain AGC 
and after it was added a random noise with signal-to-
noise ratio 1. 

Very Fast Simulated Annealing (VFSA) algorithm 

Because it is computationally more efficient and able to 
solve multimodal and multivalued optimization problems, 
the VFSA was chosen to search-for the CRS kinematic 
attributes from prestack seismic data to simulate ZO 
seismic sections (Garabito et al. 2012; Minato et al. 
2012). In the finite-offset CRS stack the determination of 
the five parameters is a highly nonlinear optimization 
problem. In Garabito et al., (2013) presented a detailed 
study of the control parameter of the VFSA algorithm for 
determining efficiently the five finite-offset CRS attributes. 
In addition, for a detailed description of the VFSA 
algorithm applied to FO CRS stacking, we address the 
readers to the paper Garabito, Cruz and Söllner (2016). 

Differential Evolution algorithm 

Let us consider an objective function [	\� to be minimized 
with respect to the D-dimensional vector of parameters \ � 	"�, "�, "�…… , "]�. DE is based on a population with a 
size of NP (a positive integer), where each candidate 
solution is a D-dimensional vector, 

\V � K"V,�, "V,�, …… . . , "V,]R,						W � 1,2, …………^G.     (3) 

To initialize the population, the individuals are selected 
randomly within the boundary constraints of the search 
space, 

"V,_� � "V,_#V` � aV,_K"V,_#V` ' "V,_#bcR,			 
W � 1,2, … .^G					and											j � 1,2, … . . , g           (4) 

where aV._  is a random variable uniformly distributed in the 

interval [0, 1]. "V,_#V` and "V,_#bc are the lower and upper 
bounds of the j-th dimension of the search space, 
respectively. Each candidate solution is iteratively 
updated to search for the global minimum of [	\� by three 
basic operators, namely, mutation, crossover, and 
selection (Barros et al., 2015). 

Mutation operation 

Mutation is an operator by which a new solution vector is 
generated using the formula. 

hV� � \iQ� � jK\iT� ' \ik� R.                       (5) 

The indexes a�, a�	, a�	 ∈ m1,2, …^Gn are mutually distinct, 
chosen randomly, and different from the index i. The 
mutation scale factor F is a real and constant factor ∈ (0,2+, which controls the length of the step given in the 
direction defined by K\iT� ' \ik� R. 
Crossover operation 

Crossover operation is applied to each pair of the target 
vector \iQ�  and its corresponding mutant vector hV� to 
generate a trial vector oV�. In the basic version, DE 
employs the binomial (uniform) crossover defined as 
follows: 

pV_� � q <V_	� 	W[	a_ ≤ s7	2a	t � tib`u
"V_� 																											2�$vawW3v

x,   t � 1,2, ……g.          
(6) 

The crossover operation serves to enhance the diversity 
of the mutated parameter vectors, in the sense of making 
them cover a large region of the search space. In (6), the 
crossover rate s7 ∈ (0,1+	is a user-specified constant, 
which controls the fraction of parameter values copied 
from the mutant vector and leads the algorithm to escape 
from local minimum..  tib`u 	is a randomly chosen integer 
in the range [1,D]. 

Selection operation 

The objective function value of each trial vector is 
compared to that of its corresponding target vector in the 
current population. If the trial vector [	oV�� has less or 
equal objective function value than the corresponding 
target vector [	\V��, the trial vector will replace the target 
vector and enter the population of the next generation. 
Otherwise, the target vector will remain in the population 
for the next generation. 

The above three steps are repeated generation after 
generation, until some specific termination criteria are 
satisfied, as we can see in the flowchart in Figure 3. 
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Control parameters of DE and VFSA  

The appropriate control parameters of 
optimization algorithm provide accurate
reduced computational cost. In order to select
parameters and to study the performance of
VFSA algorithms, we made tests in the 
dataset generated for the model in the lower part of 
Figure 2. The tests are referred to
corresponding to the reflection traveltime of the central 
ray depicted with red line, whose coordinates 	"E � 2250, 	$� � 500 and �F � 1.1403. T
surface velocity is <� � 1500z 3⁄ . Then, t
the control parameters for both algorithms
through convergence runs and for discre
control parameters. For each independent run 
or VFSA algorithms searching the five FO
the algorithm stops when it reaches 4000 fun
evaluations or when the global minimum is found
before reaching the maximum cost function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DE parameters 
For DE algorithm the three control parameters are t
population size ^G, a constant integer that is chosen 
accordingly the dimension of the optimization pr
the crossover factor s7∈ [0,1] and the mutation sca
factor |∈ [0,2]. 

For fixed s7 � 0.8, which is considered a good selection 
by means of previous tests, and for 
regular grid values of ^G and |, it was generated the 
performance surface shown in Figure 4a. ^G � 25 from the results shown in Figure 
dimensional grid values of the s7 and |
the performance surface for DE algorithm 

In both results, the smooth areas with high
function values correspond the best combination of 
control of parameters for DE algorithm to converge to the 
global minimum. In these areas the DE 
converges to the global minimum before reaching the 
maximum number of function evaluations. In the rugged 
areas with low and fluctuating values of the objective 
function, the algorithm stop when it reaches the maximum 

Figure 3: Flowchart of DE algorithm.

Start the population

End 

Mutation 

Crossover 

Selection 

 

Yes 

No 

Stop 
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control parameters of a global 
accurate results and 

In order to select control 
and to study the performance of the DE and 

the noisy synthetic 
erated for the model in the lower part of 

d to the point G� 
corresponding to the reflection traveltime of the central 

ed with red line, whose coordinates are 
The constant near 

Then, the selection of 
for both algorithms was carried out 

for discrete sets of the 
For each independent run of the DE 

FO-CRS attributes, 
aches 4000 function 

the global minimum is found even 
cost function evaluations. 

control parameters are the 
a constant integer that is chosen 

accordingly the dimension of the optimization problem; 
[0,1] and the mutation scaling 

, which is considered a good selection 
 a bi-dimensional 

it was generated the 
a. By choosing the 

n in Figure 4a, for a bi-|, it was generated 
rface for DE algorithm in Figure 4b.  

In both results, the smooth areas with higher objective 
the best combination of 

control of parameters for DE algorithm to converge to the 
global minimum. In these areas the DE algorithm 

to the global minimum before reaching the 
maximum number of function evaluations. In the rugged 

d fluctuating values of the objective 
when it reaches the maximum 

number of evaluations of
these results, we choose the following best values for 
optimizing the five FO-CRS^G � 25.  

VFSA parameters 

We follow the same procedure
algorithm to select the control
algorithm. The three control parameters of the VFSA 
the initial temperature ��, the cooling rate 
number of trials moves NT.

 

 
 

owchart of DE algorithm.  

Figure 4: Performance surfaces of 
algorithm: a) For fixed ^G � 25.   

Figure 5: Performance surfaces of the VFSA algorithm: 
a) For fixed ^� � 50 and b) for fixed 

the population 
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number of evaluations of the objective function. From 
we choose the following best values for 

CRS attributes: s7 � 0.8, | � 0.5, 

We follow the same procedure as used for the DE 
control parameters for VFSA 

algorithm. The three control parameters of the VFSA are 
, the cooling rate sV and the 

number of trials moves NT. 

 

 

 

4: Performance surfaces of DE optimization 
algorithm: a) For fixed s7 � 0.8 and b) for fixed 

: Performance surfaces of the VFSA algorithm: 
and b) for fixed �� � 1.5. 
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Through several tests of the VFSA algorithm optimizing 
the five FO-CRS attributes, we observed that the initial 
temperature does not affect significantly 
of VFSA. Then, by fixing the initial temperature to�� 	 � 1.5 for a regular grid vales of s
generated the performance surface for the VFSA 
algorithm shown in Figure 5a. The flat smooth areas are 
related with the best performance and efficiency of the 
optimization algorithm. From Figure5a, we observe that 
the NT is less sensitive and must be greater than 20, and 
then we choose ^� � 50.  Using this value 
regular grid of sV  and ��, it was generated other 
performance surface shown in Figure 5b.

Both results show flat smooth areas, 
algorithm converge to the global min
areas with small fluctuations the algorithm 
performance and in the areas with high fluctuations 
combinations of the control parameters are not 
appropriate.  From both performance surfaces in Figures 
5a and 5b, the VFSA parameters must be chosen in the 
intervals sV ~ 0.3 and sV	 � 0.5. From these results the 
best values are: �� � 1.5, sV � 0.4,		
emphasize that similar values of control paramet
VFSA were selected in Garabito et al (2017).

 
 

CONVERGENCE PLOTS FOR DE AND VFSA 

In order to compare the performance of 
algorithms to find the optimal solution for
attributes, we perform the convergence 
same synthetic dataset and sample point 
coordinates 	"� � 2250z, $� � 500z, �
applied the both algorithms using the control 
selected before. Figure 6a shows the convergence

Figure 6: Convergence plots of the optimization 
algorithms to search the five FO CRS attributes
DE algorithm and b) VFSA algorithm. 
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of the VFSA algorithm optimizing 
erved that the initial 

significantly the performance 
ixing the initial temperature to sV and ^�, it was 

generated the performance surface for the VFSA 
5a. The flat smooth areas are 

related with the best performance and efficiency of the 
Figure5a, we observe that 

the NT is less sensitive and must be greater than 20, and 
Using this value and for a 

it was generated other 
5b. 

smooth areas, where the VFSA 
rithm converge to the global minimum. In the flat 

thm decreases its 
performance and in the areas with high fluctuations the 
combinations of the control parameters are not 

nce surfaces in Figures 
5a and 5b, the VFSA parameters must be chosen in the 

From these results the 
and ^�=50. We 

similar values of control parameters for 
Garabito et al (2017). 

 

FOR DE AND VFSA  

e the performance of DE and VFSA 
he optimal solution for the five FO-CRS 

attributes, we perform the convergence tests using the 
etic dataset and sample point G�  of �� � 1.1403�. We 

control parameters 
the convergence curves 

for 10 single runs of the DE algorithm. 
3800 evaluations of the objective function
reaches the global minimum for
shows the progress of convergence 
the VFSA algorithm. Approximately after 2
of the objective function the algorithm reaches
minimum. 

These results reveals that the DE is 
slower than VFSA. Because the VFSA reaches the global 
minimum faster, we can see it as efficient.
converge to the global minimum faster, we can say that it 
is efficient, even though, after 2900 evaluations, some 
runs reach very close to the global minimum

In Table 1, we show the exact and estimated values of 
the five FO-CRS attributes. The exact values are 
calculated by ray tracing and the estimated values are the 
average of 10 runs of the DE and VFSA algorithms. The 
DE algorithm has the lowest value of the objective 
function and, as expected, the VFSA algorithm due to the 
small-scale fluctuation around the global minimum has
slightly higher value. For three attributes 
DE relative errors are slightly 
the VFSA errors. 
 

 �= �> 1 � �
Ray 
tracing 

-
30.98 11.55 1346.3

DE  -
31.03 11.26 1445.5

VFSA  -
30.99 11.19 1518.2

DE error 
(%)  0.151  2.549  6.861 

VFSA 
error (%)  0.039  3.176  11.324 

 

 
 

APPLICATION IN LAND SEISMIC

One of main application of the FO
enhance common-offset seismic data for using in 
migration process. In the following example, we applied it
using the VFSA and DE global opti
seismic data from Tacutu Basin, Northern Brazil. We use 
the seismic line 50-RL-87 acquired in the ea
low fold (12 traces). The dataset was submit
following preprocessing: geometry, trace edition, static 
correction, amplitude correction, coherent noise 
attenuation, deconvolution, time
whitening, velocity analysis, residual statics correcti
The output of the flow is the 
method. In Figure 7 is the common
1000m extracted from the pre
and VFSA optimization algorithms used the
parameters as in the previous 
CO sections simulated by the 
using the DE and VFSA are shown in Figure 
respectively. Both results show great enhancement of the 
reflection seismic events 
section (Figure 7). With some effort, it can be seen 
the CO section obtained with DE algorithm introduces 
small improvements in s
However, it is also observed tha
is highlighted in the DE section

Tabela 1: FO-CRS parameters calculated by 
raytracing and by DE and VFSA algorithms.

of the optimization 
to search the five FO CRS attributes: a) 
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runs of the DE algorithm. Approximately after 
00 evaluations of the objective function the algorithm 

mum for all runs. The Figure 6b 
convergence for 10 single runs of 

the VFSA algorithm. Approximately after 2900 evaluations 
e function the algorithm reaches the global 

These results reveals that the DE is effective, but much 
Because the VFSA reaches the global 

minimum faster, we can see it as efficient. As the VFSA 
converge to the global minimum faster, we can say that it 
is efficient, even though, after 2900 evaluations, some 

ose to the global minimum. 

the exact and estimated values of 
attributes. The exact values are 

calculated by ray tracing and the estimated values are the 
average of 10 runs of the DE and VFSA algorithms. The 

has the lowest value of the objective 
function and, as expected, the VFSA algorithm due to the 

scale fluctuation around the global minimum has a 
. For three attributes K�>, ��, ��R, the 

DE relative errors are slightly smaller in comparison with 

�� 1 � �� 1 � �� 
  
Cohe
r. 

1346.3 -2462.9 1152.8    

1445.5 -2275.9  1337.0  -
0.321 

1518.2 -2414.1 1424.5  -
0.319  

6.861  8.219  8.096   

11.324  2.023  11.25   

LAND SEISMIC DATA  

One of main application of the FO-CRS stacking is to 
offset seismic data for using in 

In the following example, we applied it 
using the VFSA and DE global optimization to real land 
seismic data from Tacutu Basin, Northern Brazil. We use 

87 acquired in the early 80’s with a 
low fold (12 traces). The dataset was submitted to the 

: geometry, trace edition, static 
correction, amplitude correction, coherent noise 
attenuation, deconvolution, time-variant spectral 
whitening, velocity analysis, residual statics correction. 

is the input for the FO-CRS stack 
is the common-offset section of 

1000m extracted from the pre-processed dataset. The DE 
and VFSA optimization algorithms used the same control 

as in the previous convergence studies. The 
simulated by the FO-CRS stack method 

sing the DE and VFSA are shown in Figure 8a and 8b, 
th results show great enhancement of the 

reflection seismic events in comparison to the original 
). With some effort, it can be seen that 

the CO section obtained with DE algorithm introduces 
small improvements in some parts of the section. 

t is also observed that the linear coherent noise 
in the DE section. 

CRS parameters calculated by 
and by DE and VFSA algorithms. 



FO-CRS
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Conclusions 

In this paper we presented the fundame
practical aspects of the FO-CRS parameters 
determination by means of global optimization by using 
one single step strategy. For comparison, we made 
convergence tests for 10 runs using the DE and VFSA 
algorithms. We show that the DE algori
converge to the global minimum, but the CRS attributes 
are determined with good precision. The VFSA algorithm 
converges more quickly, but the final parameters values 
show small-scale fluctuations around the optimal values.
By applying to real land seismic data, both algorithms 
presented a very good performance and 
differences are observed. 
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