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Abstract

Cluster environments are crucial to modern
geophysics. Major processing companies make use
of one or more computational environments, whether
they be in-house clusters or third-party public clouds,
to guarantee the efficient execution of their processing
flows. But the diversification of such environments
created a demand for software tools that are able
to scale with efficiency in these ever-increasing
ecosystems. Aside from efficiency requirements,
these tools must also be able to handle and recover
automatically from the faults that arise from these new
and complex ecosystems. In this paper, we discuss
how we leverage the Scalable Partially Idempotent
Tasks System (SPITS) programming model and the
PY-PITS runtime system to efficiently harvest the
computing power of heterogeneous systems in order
to solve geophysics problems. We also present an
experiment in which we combine the computational
resources from several clusters and workstations
simultaneously to perform the regularization of
seismic data and demonstrate the scalability and
robustness of the system.

Introduction

Distributed and parallel computing are in the heart of
modern geophysics problems, in such a way that it is not
uncommon for large companies to have more than one
cluster (Huang et al., 2016). That’s because the demand
for computing power only grows over time, as datasets
become larger, and newer methods become more complex
and time-consuming, such as Reverse Time Migration
(RTM) and Full Wave Inversion (FWI). As specific tools
become part of different strategies for processing different
datasets, clusters get allocated for different sets of tasks
and tailored to provide the maximum efficiency possible
given the tools that are commonly used, this includes
adjusting jobs policies, such as the time limit a job is
allowed to run.

Along with the computational power provided by in-
house clusters, the recent development of the cloud
computing models (Hayes, 2008) enables companies to
quickly expand and shrink their computational power on
demand to meet their needs. Nonetheless, unlike private

clusters, the access to the computing resources on the
Cloud is performed through a network access, e.g. the
Internet, which is typically slower and more susceptible to
connection problems.

In order to address these challenges, several approaches
have been developed in the past, however, most of them
require the installation of specialized or custom software,
which usually requires the intervention of the systems
administrators. In this paper, we discuss how we leverage
the PY-PITS runtime system (Borin et al., 2016) and
the SPITS programming model (Borin et al., 2015) to
efficiently execute seismic processing programs on real-
world heterogeneous clusters and present an experiment
that demonstrates the efficiency and robustness of the
system when performing the regularization of seismic data
on several clusters and workstations simultaneously.

The paper is organized as follows: first, we present the
related work, then, we provide an overview of the SPITS
programming model and the PY-PITS runtime system.
After this, we discuss the execution of the PY-PITS
runtime and user programs on heterogeneous clusters and
show the experimental results. Finally, we present our
conclusions.

Related Work

Grid computing (Foster and Kesselman, 2003) is a
well-established programming model which leverages the
computing power of several heterogeneous computers
connected through the internet and/or dedicated links.
To allow interoperability, many technologies were
standardized by the Open Grid Forum1, such as the
GridFTP, to account for data transfer, and the Simple API
for Grid Applications (SAGA).

Despite all efforts to standardize grid computing, Medeiros
et al. (2003) saw a hint of immaturity in the area by
surveying users of many grid systems. They verified many
of them had trouble configuring and diagnosing faults that
occurred during execution of the applications, requiring
deep knowledge of the underlying system. More efforts
to ease the usage of grid systems were discussed by Bal
et al. (2009), where a framework was proposed to simplify
the programming and deployment of grid applications.
Taura et al. (2003) also developed a framework that allows
dynamic join/leave of resources. Although these systems
are more generic, PY-PITS strives for simplicity.

Souza et al. (2014) were able to utilize workstations
for computation that otherwise would spend more than
half of the week time (67%) idle. But their approach

1More information available at: www.ogf.org
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based on Message Passing Interface (MPI) required the
introduction of delays in the code to throttle down the
application when a user was detected. Furthermore, the
workstations comprised an entirely separate cluster, and
the lack of dynamic provisioning of MPI required the job to
be manually split between clusters and constantly checked
for an increasing number of “dead” processes that would
cause the job to halt. Our approach also takes advantage
of idle workstations in order to increase the computing
resources available, however, the dynamic nature of our
system allows us to simply terminate the processes in the
workstations and restart them, automatically aggregating
the resource to the whole, also removing the need to
manually split the work between clusters.

Souza et al. (2015) discuss the necessity for robust
and portable software in heterogeneous systems in the
industry. A modular library allows them to harness several
types of hardware and then hand-tune each module for
specific targets. Even though this work focus on the
evaluation of Central Processing Unit (CPU) code running
on heterogeneous clusters environments, the PY-PITS
runtime system allows the user to build modules that use
the computational power of hardware accelerators. In
fact, we have already designed and executed applications
that combine PY-PITS with the Open Computing Language
(OpenCL) framework to harness the computational power
of hardware accelerators in heterogeneous clusters.

SPITS Programming Model and the PY-PITS Runtime
System

Most seismic processing problems (e.g., Common-
Midpoint (CMP), Common-Reflection-Surface (CRS),
migration) tend to fall into a class known as
“embarrassingly parallel” problems. These problems
can usually be decomposed into a series of completely
independent tasks where an operator is applied to each
sample of each trace in a given dataset.

The SPITS programming model (Borin et al., 2015) aids
in the process of converting these types of problems
into applications by providing a clear distinction of the
responsibilities of each component in the system. The Job
Manager is responsible for executing the generate task
function, which splits the input into a series of independent
tasks that are sent to Task Managers. Each task
is consumed by a unit called Worker, which calls the
execute task function to process the task and produce
a single result. This result is then passed to the Committer,
which calls the commit task function to assemble the
final output from each of the partial results. From a
developer standpoint, only these 3 functions must be
implemented to solve the problem and all the details
about dispatching, receiving, and resending tasks and
results are managed by the runtime, which implements
the Task Manager, the Job Manager, and the Committer.
In our tests, we use an open source reference runtime
implementation called PY-PITS (Borin et al., 2016) to
execute our seismic processing applications.

The PY-PITS runtime was implemented in Python to allow
better compatibility with a variety of operating systems and
features means for dynamically adding and removing Task
Managers, as well as fault tolerance.

Running PY-PITS on Heterogeneous Clusters

Communication and Connectivity

The PY-PITS implementation follows a producer-consumer
model where the producer (Job Manager) actively
pushes tasks to each consumer (Task Managers) in
the network using Transmission Control Protocol (TCP)
sockets (Tanenbaum, 2013). Therefore, Task Managers
are addressed by a pair <ip:port>, where ip is the
computing node Internet Protocol (IP) address and port
is the port assigned by the operating system to the TCP
socket initiated by the Task Manager process. As a
consequence, every computing node must be reachable by
the computer that is running the producer (Task Manager).

In a common single-cluster environment, all of the
computing nodes are connected to the same local network,
hence, all computing nodes can be directly reached
through their local IP addresses by other computing nodes.
Consequently, reachability is not a concern when both the
Job Manager and the Task Managers are executed on the
cluster computing nodes.

Nonetheless, reachability becomes a problem when the
user wants to execute the Task Managers on the cluster
computing nodes and the Job Manager on a machine
outside of the cluster local network, as illustrated in
Figure 1. The problem lies on the fact that clusters
are usually configured so that the computing nodes are
connected to a local network (with local IP addresses) and
are not directly reachable from machines outside of the
cluster.
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Figure 1: Executing the Job Manager outside of the cluster
local network.

In order to access computing nodes on the cluster, the
user must first access an entry node, which is connected
to the cluster local network and is also reachable from the
outer world. This node, also known as head node, is often
responsible for managing the job submission system and
is used by users to queue jobs and monitor their progress.

One way of enabling a Job Manager that is running outside
of the cluster to reach the computing nodes is to configure
the system to forward network packets from selected
network ports at the head node to ports at the computing
nodes. For example, the head node could be configured to
forward packets sent to port 5000 of the head node to port
2500 of computing node 1, packets sent to port 5001 of the
head node to port 2500 of computing node 2 and so on.
In this sense, the user could configure the Task Managers
to connect their TCP sockets to port 2500 and inform the
Job Manager that the Task Managers are located at the
addresses <ip:5000>, <ip:5001>, ..., where ip is the
IP of the head node.
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Configuring the head node to perform such forwarding in
a persistent way may cause several problems, including
issues with security, authentication, multi-user port sharing,
etc. Moreover, it would require manual intervention from
the system administrator. An alternative, and simple,
way to solve this problem is to let the user perform
port forwarding on the head node via secure shell (ssh)
commands. As it turns out, the secure shell daemon and
its counterpart application allow users to access the head
node and perform port forwarding.

We implemented a shell script that relies on ssh to
automate port forwarding. The script takes advantage of
the Network File System (NFS) communication between
the machines and the head node of each cluster, as well
as the PY-PITS announcing system, to periodically check,
through an SSH connection to the head node, if any new
Task Managers started executing. If the list of active Task
Managers does change, the script automatically builds a
new ssh command to perform all forwarding to local ports
in the node running the Job Manager and updates the local
list of available Task Managers.

Performing all redirections with the least number of
connections is essential when forwarding a large number
of ports because it ensures that we do not reach the
maximum number of allowed ssh connections to a head
node. The tolerance to network failures implemented by
PY-PITS allows us to destroy a previous ssh connection
and associated port forwards and quickly create a new one
without compromising the executing job, thus requiring only
one connection to the head node. This flexibility would
otherwise be impossible with frameworks and libraries that
require a persistent connection to the computing nodes.

Code portability / Compilation

Maintaining portability of the software is essential when
dealing with heterogeneous systems, as well as ensuring
that the full potential of each system is harnessed.

In order to address the portability of the PY-PITS runtime
system, we designed it using the Python language. In this
way, the runtime system can be executed on any system
that contains the Python virtual machine. Choosing Python
as the development language for the runtime allowed us
to maximize the number of Linux systems that support
it without the need to install any additional packages.
That is because, unlike the Java virtual machine, the
Python interpreter is installed by default on most Linux
server distributions and nearly all Desktop distributions.
Starting on Python 2.5, all libraries required by the runtime
are available in the Python distribution and no additional
installation is required.

It is important to notice that virtual machines may incur
extra overhead when executing guest code. Nonetheless,
our experiments indicate that the PY-PITS runtime does not
require much CPU time and that executing it on top of the
Python virtual machine has very little effect on the overall
execution time.

The portability of the user module must also be addressed.
However, in this case, the extra overhead introduced by a
virtual machine could affect the performance of the overall
system. Most computing clusters are built with machines
that employ AMD and Intel x86 processors. These

processors evolved over time but maintain a common
instruction set. In this sense, we could compile a
single compatible binary and deploy it to all machines
in the computing environment, nonetheless, this solution
would fall short on performance because of the several
differences between the many variations of the x86
architectures, for instance, vector instructions. To solve
this problem, we decided to automate, through a set
of scripts and secure shell application, the deployment
and compilation of the user source code to the entire
environment, thus allowing the local compilers to choose
the best optimizations for each machine.

Experimental Results

In this section we discuss an experiment that illustrates
the benefits of using PY-PITS when running seismic
processing code on heterogeneous clusters and evaluate
the efficiency of the overall system.

Figure 2 shows the network diagram for the machines
considered during the test. Workstations 1 through 6 are
user workstations intended for light seismic processing.
Cluster 1 is an in-house cluster, and thus it was fully
dedicated to the test. Clusters 2 and 3, on the other
hand, are shared with other laboratories and have no
specific resource manager, so competition for resources
may happen if more than one user happen to use the
computing nodes at the same time. Cluster 4 is a cluster
designed for jobs that have a short average execution time,
and it is managed by a Portable Batch System (PBS)
compatible software that offers “fast” queues and a “long”
queue, with the maximum execution time being 10 minutes,
40 minutes and 2 hours for the “fast” queues and 2 days for
the “long” queue. Finally Cluster 5 is a high-performance
computing cluster, also managed by PBS, with queues
limited by 3 days of execution.

Figure 2: Network diagram of the environment considered
in the test.

In total, there were 121 computing nodes available for use
during the test, with their specific configuration presented
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Table 1: Computational resources available for the test.

Cluster Nodes CPU Virtual Cores RAM OS

Workstations
2 Intel(R) Core i7-4790 8 32GB LMDE 2
2 Intel(R) Core i7-5930K 12 64GB CentOS 6.8
1 Intel(R) Core i5-4460 4 16GB Linux Mint 17.3 Rosa

Cluster 1 4 Intel(R) Xeon X5675 24 189GB RocksCluster 6.2 (Based on Centos 6.6)

Cluster 2 2 Intel(R) Xeon E5-2630 12 32GB Ubuntu 16.04.1 LTS
2 Intel(R) Xeon E5-2630 24 32GB Debian GNU/Linux 8

Cluster 3 8 Intel(R) Xeon X5673 24 189GB Ubuntu 12.04.5 LTS
4 Intel(R) Xeon E5-2450 32 189GB Ubuntu 12.04.5 LTS

Cluster 4

11 AMD Opteron 6276 32 64GB Debian 6.0.10
3 AMD Opteron 6276 32 128GB Debian 6.0.10
1 AMD Opteron 6276 32 64GB Debian 8.7
1 AMD Opteron 6380 32 256GB Debian 8.7

Cluster 5 80 Intel(R) Xeon E5-2670 48 64GB SUSE Linux Enterprise Server 12 SP1

in Table 1.

The seismic processing application performs the
regularization of seismic data. This process assembles
seismic traces for specific coordinates based on other
seismic traces. In order to compute new traces on specific
coordinates, the application interpolates existing seismic
traces. Each task is identified by the coordinates of the
seismic trace that must be assembled. The Job Manager
sends the coordinates to Task Managers, which reads the
input traces from a local files (previously copied to the
clusters), assembles the new trace and sends it to the
PY-PITS Committer.

In order to evaluate the system, we collect the following
information:

• CPU time used by the user module: our regularization
module was instrumented to measure the amount
of CPU time the execute task function takes to
finish by invoking the getrusage system call at the
beginning and at the end of the function.

• Task Manager processes wall time and CPU usage:
the Task Manager code was instrumented to record
the start and end time and the amount of CPU time
used by the process by invoking the getrusage
system call. Since the Task Manager may contain
working threads that use multiple processing cores,
ideally, the CPU time should be equal to the wall time
multiplied by the number of CPU cores allocated to
the Task Manager process. This would indicate that
the process used all the CPU cores during all its
lifetime. However, in cases where the application is
sharing CPU resources with other processes or the
application is waiting for input/output (I/O) (network
packets, for example), the amount of CPU time
consumed by the application is smaller than the wall
time multiplied by the number of cores.

• Start and end time stamps for task execution: Task
Managers were instrumented record the start and
end time of every call to the execute task function,
implemented by the user module. This information
allows us to quantify the amount of time the runtime
takes between invoking the execute task function
for consecutive tasks, which helps us identify cases in
which the Task Manageris starving.

The test was performed as follows: First, the PY-PITS
runtime and source code of the module were transferred
to the clusters and workstations and the source code was
compiled using the compiler available at each machine at
the maximum optimization level available. The next step
was to set up the directory where tests would run and
transfer the required input files. Then we set up and ran
the Job Manager on Workstation 1 as well as the port
forwarding scripts connecting this workstation with all other
clusters. All workstations were in the same network so no
forwarding was necessary between them. Workstations
2 to 6 were set up with a Task Manager each, allocating
the maximum number of CPU cores available for each
Task Manager. Each cluster was set up individually, the
clusters 1, 2 and 3 also executed a single Task Manager
per machine that allocated the maximum number of CPU
cores. For cluster 4 we queued 2 types of Task Managers,
one allocating a single CPU core per Task Manager, for
the fast queues, and another allocating 8 CPU cores per
Task Manager, for the long queue. Finally, for cluster 5 we
queued Task Managers allocating 8 CPU cores.

The computation was distributed to 183 Task Managers
across the clusters and workstations and took 11 hours and
56 minutes to finish.

Resource Allocation

Figure 3 shows the relative resource allocation per
machine. This metric shows the percentage of CPU cores
being used by our application in a given computing node
when compared to the maximum number of CPU cores
concurrently allocated on the same computing node to
our application during the entire execution. This chart
allow us to visualize the effects of the dynamic provision
of computing resources and how our application uses
the resources over time, including situations caused by
network slowdowns and loss of connectivity.

The first event to be observed occurs in workstations 4
and 5 at 3h:00m, and it is caused by users returning to
their workstations, therefore terminating the opportunistic
execution of the Task Managers. The next event is a
simulated network failure with cluster 3, again at 3h:00m.
Notice that the cluster 3 only ran out of tasks to process
at 3h:10m, which happens because PY-PITS keeps an
internal queue of tasks to hide the network latency. As
soon as the connection is reestablished, cluster 3 is able
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Figure 3: Relative resource allocation per machine over time.

to resume the computation. Near the time 5h:50m we
can see the Task Manager at machine 2 of cluster 3
being terminated. That was caused by an user with
higher privilege in that cluster requiring the full machine.
Furthermore, in cluster 4 we can see several Task
Managers executing and terminating due to the time limit
of the fast queues. Finally, cluster 5 shows the Task
Managers gaining access to compute nodes over time,
enabling the system to take advantage of the computating
resources as soon as they are released by other jobs.

Computation Efficiency

At the end of the execution the computation efficiency of
each Task Manager was verified by comparing the amount
of CPU time the Task Manager process used to execute
the PY-PITS runtime and the regularization module against
the Task Manager wall time multiplied by the number of
CPUs allocated to the Task Manager. As a result, we used
these metrics to quantify the overall computation efficiency
and the overhead imposed by the PY-PITS runtime system.
The efficiency allows us to see that, even if a certain
number of CPU cores is allocated to the Task Managers,
and they manage to pull tasks and push results without
starvation, the competition with other processes running
on the machine and even the overhead introduced by
the runtime itself may reduce the amount of computation
dedicated to solving the problem.

Figure 4 shows the computation efficiency only for the
Task Managers executed until the end of the test, thus
excluding the Task Managers from Workstations 4 and 5,
as well as Machine 2 from Cluster 3 and the Task Managers
submitted on the fast queue of cluster 4. It is possible
to observe that, even though Workstation 6, Machine 1
from Cluster 2, and the entire Cluster 3 had nearly 100%
relative resource allocation per machine (Figure 3), their
efficiency were the lowest (∼ 80%) when compared to
other systems. In these cases, it happens because our
application process did not have exclusive access to the
resources, so processes from other users were competing
for CPU time. The simulated network failure that affected
Cluster 3 also contributed to the poor efficiency, though

small compared to the overall execution time, because
it led the Task Managers to a complete halt until the
connection could be reestablished. Cluster 4 exhibited
an odd efficiency drop, but at the present time there is
no metric that allowed us to diagnose such effect. It
may be associated to the PBS system allocating more
CPU cores than what’s is physically available, as part of
a policy to mitigate blocking IO. Cluster 5 also presented
2 odd drops in efficiency, with significantly more runtime
overhead, 1.5%, but again no metrics are available to
diagnose the situation. Despite these predicted cases and
inconsistencies, the average efficiency of the considered
Task Managers was 96%. The overhead of the PY-PITS
runtime was also small, with 99.7% of the CPU time being
dedicated to the execution of the module, on average.
The average used is the geometric mean of the individual
efficiencies, to properly average normalized results.

Conclusions

Heterogeneous computational environments are a growing
reality on the industry for many logistical reasons and cost.
Thus it is fundamental that modern applications deal with
these environments with efficiency.

We have used the SPITS programming model and
its reference runtime PY-PITS to develop a seismic
data regularization software that features scalability, fault
tolerance, dynamic provisioning and that can be deployed
in a wide variety of hardware and software configurations.

We were able to aggregate computational resources from
five different clusters inside and outside our network, along
with 6 user workstations, totaling 183 Task Managers on
75 different machines, occupying from 1 to 32 cores each,
and one Job Manager / Committer.

The performance tests covered several real-world
scenarios, including intermittent network connectivity,
competition for resources in a shared execution
environment, queuing of many jobs in a cluster with
time-limited job queues, and opportunistic situations where
workstations could only be used for processing while the
user was away. Instrumentation of the code showed that
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Figure 4: Computing efficiency per Task Manager.

PY-PITS was able to sustain a constant flow of tasks
without causing starvation of the Workers. Additionally,
PY-PITS only contributed, on average, to 0.3% of the total
computation time, thus not imposing significant overhead
to the computation.
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