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Abstract 

The coupling–ray–theory tensor Green function for elastic 
S waves is frequency dependent, and is usually 
calculated for many frequencies. This frequency 
dependence represents no problem for calculating the 
Green function, but may be impractical or even unrealistic 
in storing the Green function at the nodes of dense grids, 
typical for applications such as Born approximation or 
non–linear source determination. 

We have already proposed the approximation of the 
coupling–ray–theory tensor Green function, in the vicinity 
of a given prevailing frequency, by two coupling–ray–
theory dyadic Green functions described by their 
coupling–ray–theory travel times and their coupling–ray–
theory amplitudes. 

The above mentioned prevailing–frequency 
approximation of the coupling ray theory enables us to 
interpolate the coupling–ray–theory dyadic Green 
functions within ray cells, and to calculate them at the 
nodes of dense grids. For the interpolation within ray 
cells, we need to separate the pairs of the prevailing–
frequency coupling–ray–theory dyadic Green functions so 
that both the first Green function and the second Green 
function are continuous along rays and within ray cells. In 
this contribution, we describe the current progress in this 
field and outline the basic algorithms. We also 
demonstrate the preliminary numerical results in several 
velocity models. 

Introduction 

In sufficiently smooth media, the anisotropic ray theory 
(Babich, 1956; Červený, 2001) can be used to calculate 
elastic P waves at all degrees of anisotropy, including 
isotropic media. However, neither the isotropic ray theory 
(Luneburg, 1944; Babich, 1961; Červený, 2001) nor the 
anisotropic ray theory is applicable to calculating elastic S 
waves in many cases of heterogeneous anisotropic 
media. We should use the coupling ray theory proposed, 
e.g., by Kravtsov (1968) or by Coates & Chapman (1990) 
for elastic S waves. 

Unfortunately, the coupling–ray–theory tensor Green 
function is frequency–dependent, and is calculated 
separately for each frequency. This frequency 

dependence represents the main obstacle for the 
interpolation of the coupling–ray–theory tensor Green 
function within ray cells. 

Klimeš & Bulant (2016) found the approximation of the 
coupling–ray–theory tensor Green function in the vicinity 
of a given prevailing frequency by two prevailing– 
frequency coupling–ray–theory dyadic Green functions 
corresponding to two elementary coupling–ray–theory 
waves. Each prevailing–frequency coupling–ray–theory 
dyadic Green function is described by its coupling–ray–
theory travel time and its complex–valued coupling–ray–
theory amplitude tensor, both calculated for the given 
prevailing frequency. Klimeš & Bulant (2016) numerically 
demonstrated that the prevailing–frequency coupling–
ray–theory dyadic Green functions are well applicable in a 
reasonably broad frequency band around the given 
prevailing frequency. The prevailing–frequency coupling–
ray–theory dyadic Green functions are calculated along 
the reference rays, which may be represented, e.g., by 
the isotropic common reference rays, the anisotropic 
common reference rays, the anisotropic–ray–theory rays, 
or the SH and SV reference rays (Klimeš & Bulant, 2014). 
For the sake of conciseness, we shall refer hereinafter to 
the reference rays as the rays. 

Method 

Each ray corresponds to two ray parameters and is 
represented by a point in the ray–parameter domain. The 
ray–parameter domain is triangulated according to Bulant 
(1996), see Figure 10. The vertices of the triangles 
correspond to rays. Each triangle corresponds to a ray 
tube, and its three vertices correspond to three rays which 
form the edges of the ray tube. Each ray tube is sliced 
into ray cells according to Bulant & Klimeš (1999). 

At each point of each ray, we have two prevailing–
frequency coupling–ray–theory dyadic Green functions 
described by their coupling–ray–theory travel times and 
their coupling–ray–theory amplitude tensors. We wish to 
interpolate them within ray cells using the algorithm 
designed by Bulant & Klimeš (1999). For the interpolation 
within ray cells, we need to separate the pairs of the 
prevailing–frequency coupling–ray–theory dyadic Green 
functions so that both the first Green function and the 
second Green function are continuous along rays and 
within ray cells. 

In this contribution, we implement the separation in two 
steps: In the first step, we copy each old ray to a pair of 
identical new rays and match the pair of the prevailing– 
frequency coupling–ray–theory dyadic Green functions 
with the pair of new rays so that each Green function is 
continuous along the corresponding new ray. As a result, 
each of the three edges of each ray tube is represented 
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by two new rays instead of one ray. In the second step, 
we double each ray tube and match the three pairs of 
new edge rays with the pair of ray tubes so that the Green 
function is continuous within either of the two ray tubes. 
For details on the continuity of the Green functions along 
the rays and within ray tubes refer to Klimeš & Bulant 
(2013). 

Examples 

We numerically test the interpolation of the coupling–ray–
theory dyadic Green functions within ray cells using the 
elastic S waves. Following Pšenčík, Farra & Tessmer 
(2012) and Klimeš & Bulant (2016), we consider eight 
anisotropic velocity models referred to as QIH, QI, QI2, 
QI4, KISS, SC1 I, SC1 II and ORT. All these velocity 
models are laterally homogeneous. The density–reduced 
elastic moduli are linear functions of depth in all these 
velocity models. The density is constant.  

For a sketch of the source–receiver configuration refer to 
Figure 1. We plot the relative coupling–ray–theory travel–
time difference (half relative coupling–ray–theory travel–
time splitting) in the vertical rectangular section bounded 
by the point source from the left, and by the vertical well 
from the right. The distance of the vertical well with 
receivers from the source is 1 km. The vertical extent of 
the rectangular section corresponds to the length of the 
vertical receiver profile considered by Klimeš & Bulant 
(2016) for the calculation of the coupling–ray–theory 
seismograms: QIH, QI, QI2, QI4 and KISS 0.6 km; SC1_I 
and SC1_II 1.4 km; ORT 1.6 km. 

Velocity model QI is approximately transversely isotropic. 
Its reference symmetry axis is horizontal and forms a 45° 
angle with the source–receiver vertical plane. Velocity 
models QIH, QI2 and QI4 are derived from velocity model 
QI and mutually differ by their degrees of anisotropy. The 
differences of the elastic moduli in velocity models QIH, 
QI, QI2 and QI4 from the elastic moduli in the reference 
isotropic velocity model are determined by ratio 0.5:1:2:4. 
For the elastic moduli in velocity models QI, QI2 and QI4 
refer to Bulant & Klimeš (2008).  The relative coupling–
ray–theory travel–time difference in the vertical source–
receiver section in velocity models QIH, QI, QI2 and QI4 
is displayed in Figures 2–5. Since the colour scale in each 
figure corresponds to the degree of anisotropy, the 
changes between Figures 2–5 illustrate different 
development of S–wave coupling and splitting in 
dependence on anisotropy, which was discussed by 
Červený, Klimeš & Pšenčík, 2007, fig. 21. Figures 2–5 
would be practically identical and close to Figure 5 for 
anisotropic–ray–theory travel times. 

Velocity model KISS represents velocity model QI 
described above, rotated by −44° about the vertical axis 
in order to position the reference symmetry axis, 
corresponding to the kiss S–wave singularity, just 1° from 
the source–receiver plane. The relative coupling–ray–
theory travel–time difference in the vertical source–
receiver section is displayed in Figure 6. Figures 3 and 6 
thus represent two different vertical sections in the same 
velocity model. 

Velocity model SC1_I is approximately transversely 
isotropic and its reference symmetry axis is horizontal. Its 

slowness surface contains a split intersection singularity, 
whereas velocity models QIH, QI, QI2 and QI4 display no 
exact nor split intersection singularity. The relative 
coupling–ray–theory travel–time difference in the vertical 
source–receiver section is displayed in Figure 7. 

Velocity model SC1_II is analogous to SC1_I, but its 
reference axis of symmetry is tilted. The split intersection 
singularity in velocity model SC1_II is thus positioned 
differently in comparison with velocity model SC1_I. In the 
source–receiver plane, the split intersection singularity is 
close to horizontal slowness vectors. The relative 
coupling–ray–theory travel–time difference in the vertical 
source–receiver section is displayed in Figure 8. 

In the orthorhombic velocity model ORT, the slowness 
surface contains four conical singularities. The rays 
leading from the source to the middle part of the receiver 
profile pass close to one of these singularities. This 
conical singularity then acts as an interface and smoothly 
but very rapidly converts the actual elastic S–wave 
polarization from the approximately anisotropic–ray–
theory polarization S1 to the approximately anisotropic–
ray–theory polarization S2, and vice versa. That is 
probably why the ray tubes in the vicinity of the conical 
singularity in velocity model ORT cannot be split into the 
pairs of tubes with continuous prevailing–frequency 
coupling–ray–theory dyadic Green functions. The relative 
coupling–ray–theory travel–time difference in the vertical 
source–receiver section is displayed in Figure 9. The 
diagonal grey zone corresponds to the ray tubes which 
cannot be split into the pairs of tubes with continuous 
prevailing–frequency coupling–ray–theory dyadic Green 
functions. The ray tubes in the ray–parameter domain in 
velocity model ORT are displayed in Figure 10. We can 
observe the regions around three of four conical 
singularities where the ray tubes cannot be split into the 
pairs of tubes with continuous prevailing–frequency 
coupling–ray–theory dyadic Green functions. The bottom–
right region corresponds to the diagonal grey zone in 
Figure 9. 
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Figure 1: The source–receiver configuration for the 
calculationof the S-wave travel times, with a sketch of 
the rays leading to the receivers. The source is located 
at the Earth’s surface, the receivers are placed in the 
vertical well. The depths of the receiver profiles are 
presented in the figures with travel-time differences. 
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Figure 2: Relative coupling–ray–theory travel–time difference 
d in velocity model QIH. 
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Figure 4: Relative coupling–ray–theory travel–time difference 
d in velocity model QI2. 
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Figure 3: Relative coupling–ray–theory travel–time difference 
d in velocity model QI. 
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Figure 5: Relative coupling–ray–theory travel–time difference 
d in velocity model QI4. Since the colour scale in Figures 2–5 
corresponds to the degree of anisotropy, the changes between 
the figures illustrate different development of S–wave coupling 
and splitting in dependence on anisotropy. 
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Figure 6: Relative coupling–ray–theory travel–time difference 
d in velocity model KISS. Velocity model KISS represents 
velocity model QI described above, rotated by −44° about the 
vertical axis, Figures 3 and 6 thus represent two different 
vertical sections in the same velocity model. 
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Figure 7: Relative coupling–ray–theory travel–time difference 
d in velocity model SC1_I. 
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Figure 8: Relative coupling–ray–theory travel–time difference 
d in velocity model SC1_II. 

 

Conclusions 

The prevailing–frequency approximation of the coupling 
ray theory allows us to process the coupling–ray–theory 
wave field in terms of travel times and amplitudes, i.e., in 
the same way as the anisotropic–ray–theory wave field. 
The prevailing–frequency approximation of the coupling 
ray theory can thus be included in wavefront tracing and 
in the interpolation within ray cells in anisotropic media, 
provided that we can separate the pairs of the prevailing–
frequency coupling–ray–theory dyadic Green functions so 
that both the first Green function and the second Green 
function are continuous within ray cells. In this 
contribution, we showed the preliminary version of the 
separation algorithm using eight numerical examples. 

In the proposed preliminary version of the separation 
algorithm, the interpolation is possible only in ray tubes in 
which the prevailing–frequency coupling–ray–theory 
dyadic Green functions are continuous. This requirement 
may result in ray tubes where we cannot interpolate, like 
in Figure 9 in velocity model ORT. In order to refine the 
algorithm and extend the region where we can 
interpolate, we probably should study the continuity of the 
prevailing–frequency coupling–ray–theory dyadic Green 
functions in individual ray cells rather than in whole ray 
tubes. 
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Figure 9: Relative coupling–ray–theory travel–time difference 
d in velocity model ORT.  The rays leading from the source to 
the middle part of the receiver profile pass close to one of the 
conical singularities present in the model. This conical 
singularity then acts as an interface and smoothly but very 
rapidly converts the actual elastic S–wave polarization from 
the approximately anisotropic–ray–theory polarization S1 to 
the approximately anisotropic–ray–theory polarization S2, and 
vice versa. That is probably why the ray tubes in the vicinity of 
the conical singularity cannot be split into the pairs of tubes 
with continuous prevailing–frequency coupling–ray–theory 
dyadic Green functions, and the travel times thus can not be 
interpolated, forming the diagonal gray zone in the figure. 
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Figure 10: Ray tubes in velocity model ORT for the 
interpolation of coupling–ray–theory travel times. The rays are 
represented by points (here crosses) and the ray tubes by 
triangles in the ray–parameter domain. The three regions with 
missing triangles (ray tubes) are situated around the conical 
singularities where the ray tubes cannot be split into the pairs 
of tubes with continuous prevailing–frequency coupling–ray–
theory dyadic Green functions. The bottom–right region 
corresponds to the diagonal grey zone in Figure 9. 
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