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Abstract

This paper studies the Least Squares Migration (LSM)
procedure as an optimization problem. Particularly, we
study the behavior of this imaging procedure upon the
use of robust loss functions. Our results demonstrate
that LSM can work even under heavy noise if a suitable
loss function is employed. Both the `1 norm and
the Student’s t-norm showed themselves more stable
with regard to outliers than the `2 norm conventionally
used in LSM. In the optimization step, we employ
the hybrid deterministic-stochastic L-BFGS algorithm
that exploits the structure of the objective function
to reduce the computational burden of this imaging
procedure. The quality of the achieved results show no
deterioration over the conventional L-BFGS algorithm.

Introduction

Least squares migration (LSM) is a powerful technique
used to improve the results of subsurface imaging,
because it is capable of improving the resolution
(Valenciano et al., 2009), balancing the amplitude (Farias
et al., 2015), and in general to attenuate the acquisition
footprint (Nemeth et al., 1999) of the imaged subsurface
sections.

However, the `2 norm, usually applied in the objetive
function to quantify the data residual, is strongly dependent
on the underlying statistical assumptions (Li et al., 2013).
Therefore, massive outliers caused by strong noise in the
data can significantly reduce the quality of the resulting
images. In this paper, we compare the behavior of
LSM with two similar procedures using two other objective
functions. We find that both the `1 norm and the Student’s
t-norm are more stable with regard to outliers than the `2
norm conventionally used in LSM.

Another drawback of LSM is its high computational
demand. In this respect, we compare the performance
of the more economic hybrid deterministic-stochastic L-
BFGS algorithm of Friedlander and Schmidt (2012) to
that of the conventional L-BFGS algorithm. In our tests,
both procedures lead to migrated seismic sections of
comparable quality.

In summary, we propose a combined LSM-like procedure
using an improved loss function and a more economic
algorithm. This procedure increases the method’s

tolerance to noise while at the same time reducing the
computational expense of the procedure.

Least Squares Migration

The usual form of Least Squares Migration (LSM) is based
on the Born approximation (Tarantola, 1984), which is
used to derive a linear relationship between the medium
parameters and the so called scattered wavefield. It is
based on the introduction of a background medium, with
the wavefields in the involved media satisfying

Us (xs,xr,x,ω) =U (xs,xr,x,ω)−U0 (xs,xr,x,ω) , (1)

with U being the total, U0 the background and Us the
scattered wavefield, respectively. The decomposition of
U into U0 and Us is usually assumed to follow from
a decomposition of the physical parameters of interest
as m(x) = m0 (x) + δm(x), with m0 being the smooth or
background part of the parameter function (supposed to
be known) and δm a perturbation (to be recovered).

This decomposition of the model parameters, when
used jointly with the Born approximation, provides an
approximate way to calculate the scattered wavefield for
every source and receiver according to

Us (xs,xr,ω) =−ω
2
∫

Ω

s(ω)G(xs,x)δm(x)G(x,xr)dx

=
∫

Ω

K (xd ,x)δm(x)dx.
(2)

In this equation, s(ω) is the source signature and the two
Green’s functions link the source to a generic scattering
point x in the depth domain Ω and this point to the
receiver. At the scattering point, the source wavefield
interacts with the model perturbation function δm (here
assumed to be the squared slowness, also called sloth).
After this interaction the second Green’s function connects
the scattered field to the receiver. These Green’s functions
and the wavelet signature can be grouped under the kernel
K (xd ,x), with xd = (xs,xr,ω) representing the data domain
variables.

This grouping reveals the role of the kernel K as a
mapping from the model space to the data space. A
suitable discretization of both sides of equation (2) can
be expressed in matrix form as d = Lm. Its approximate
inverse m ≈ LTds is a mapping from the data space to the
model space. correspondingly in terms of the continuous
equation (2), it represents an integral over the data domain
variables (Schuster, 2010).

In general, the matrix L generated from the discretization
of the kernel K is rectangular. Thus, instead of the above
approximate inverse, a better estimate of the model m can
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be obtained by means of a least-squares solution, i.e.,

m =
[
LTL

]†
LTd, (3)

where the superscript † denotes the pseudo inverse matrix.
Equation (3) can be solved using a great variety of linear-
system algorithms. In the next section, we discuss the
solution of this problem as one of optimization instead of
one of linear least squares.

LSM as optimization problem

We study the relationship expressed in equation (1) under
application to the reduced data set d = d̃− d0i , where d̃
represents the complete (measured) data and d0 is the
synthetic data estimated in the smooth model m0. Then,
the optimization goal becomes

J (m) =
1

Ns

Ns

∑
i=0

R(ri) =
1

Ns

Ns

∑
i=0

R([Lim]−di) (4)

In equation (4), ri = [Lim]−di is the residual between the
dataset di for source number i and the result from the
corresponding Born modeling procedure represented by
the action of Li on the vector m. Matrix Li encapsulates
the Born modeling (demigration) and migration procedure
(LT) for one experiment (shot) and all frequencies used.
The summation in (4) is over the source index i. Finally, R
is a scalar loss function, the explicit form of which will be
discussed below. The most frequent choice, being the `2
norm, has given least-squares migration its name.

Equation (4) has a gradient of the form (O’Leary, 1990)

∇J =
∂J
∂m

=
1

NS

Ns

∑
i=0

∇m R(ri) =
1

NS

Ns

∑
i=0

LT
i
[
R′ (ri)

]
. (5)

In equation (5), the R′ denotes the derivative of function
R with respect to its argument, which is to be understood
in a pointwise manner without summation. Knowing how to
evaluate both function and gradient makes this optimization
problem amenable to solution using a variety of methods as
described, for instance, in Bonnans et al. (2006).

However, equation (5) has a special structure (sum
of functions) that can be exploited to reduce the
computational cost to solve problem (4). Using the hybrid
deterministic-stochastic method proposed by Friedlander
and Schmidt (2012), it is possible to reduce the number
of evaluations of both the objective and gradient functions.
To this end, we use Algorithm A.1.

In this algorithm, Ĥ is the L-BFGS approximation to the
inverse Hessian, which is initialized using the Hessian
diagonal as described in the third strategy of Farias et al.
(2015). We use at most 10 pairs of models and gradient
differences to build this approximation.

Specifics of Algorithm A.1

Algorithm A.1 is very similar to the traditional L-BFGS
algorithm (Liu and Nocedal, 1989). The most important
difference is the use of the growing-batch strategy. This
strategy has two important consequences:

• Reduced cost per iteration: Usually the initial
batch size (B0) is very small when compared to the

nominal size Ns, i.e., B0 � Ns. This reduces the
cost per iteration, enabling more iterations for a given
computational budget.

• Increasing batch sizes: The cardinality (number
of elements) of the batches is increased at every
iteration. The reason is both the gradient and
objective function estimates obtained in A.1 are only
expected to be equal to the true values of these two
quantities when the full objective function is used. The
effect of the error from a smaller batch is reduced with
increasing batch size. Here, we used an initial batch
size of B0 = 5, increasing by incr = 1 at each iteration.

The denomination of this algorithm as hybrid deterministic-
stochastic (HDS) is justified by its behavior. At the
beginning of the optimization, it behaves more in line with
stochastic methods, like the SGD (Stochastic Gradient
Descent) method using a mini-batch (Li et al., 2014). With
increasing batch size, it tends to behaves more similarly to
deterministic methods.

Specifying the function R(r)

The problem posed in equation 4 is now almost completely
specified, except for the function R. This function controls
how the misfit between calculated and observed data will
be measured. Here, we understand R to represent a sum
over frequency and receiver coordinates, i.e.,

R(r) = ∑
ω,xr

ρ (rω,xr ) , (6)

where rω,xr represents a component of the data residual
and ρ is a scalar loss function.

For the loss function ρ, usually the least-squares
expression is used (see Table 1), because this function
is computationally convenient to manipulate and also
possesses a useful statistical interpretation. However, in
practical problems the data residual does not necessarily
present the statistical properties underlying the `2 function.
Multiple factors can contribute to this. For the seismic
inversion problem, two causes are notorious: The
presence of high amplitude noise and systematic errors
due to an incorrect physical model used in the inversion
procedure (Li et al., 2013). When this happens, the `2
function loses its efficiency.

Algorithm A.1: Hybrid deterministic-stochastic L-BGFS
algorithm, based on Friedlander and Schmidt (2012).
Input: Niter , m0, |B0|, incr
Result: m
for k← 1to Niter do

Draw a batch with size |Bk|: Bk ∈ {1, . . . ,N}
J̄k =

1
|Bk| ∑

i∈Bk

R(ri)

∇J̄k =
1
|Bk| ∑

i∈Bk

∇m R(ri)

dk =−Ĥk∇J̄k
mk+1,∇J̄k+1 = LineSearch (∇Ĵk, Ĵk, dk)
Ĥk+1 = L-BFGS Update(Ĥk,mk+1,mk,∇J̄k+1,∇J̄k)
|Bk+1|= |Bk|+ incr

end
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Table 1: Loss and influence functions. Student’s t defined
as van Leeuwen et al. (2013) and `1 as Brossier et al.
(2010).

Name ρ (r) ρ ′ (r)
`2

1
2 r2 r

`1 |r| r
|r|

student’s t log
(

1+
r2

σ2k

) (
2

kσ2

)
r

1+ r2

kσ 2

One possible way to reduce these effects is to use different
loss functions. For this reason, besides the `2 norm, we
study in this work the behavior of the `1 norm and the
Student’s t-norm (Aravkin et al., 2012). All loss functions
compared in this work are compiled in Table 1.
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Figure 1: (a) Loss and (b) influence functions used.

The behavior of these functions can be understood and
compared observing both their values and derivatives
(see graphs in Figure 1). All functions have their global
minimum in the origin, but they differ in their behavior in its
neighborhood (Figure 1a). The `1 norm is the only function
that is not differentiable there. Both the `1 and Student’s t-
norms assign a smaller weight to larger residuals than the
`2 function, in this way reducing the importance of outliers.

The derivatives of these functions, also known as influence
functions (Figure 1b), actually show that the `2 norm
progressively attributes larger weights to larger residuals.
In contrast, the `1 norm, except at the origin, attributes the
same weights to residuals of all sizes, and the Student’s
t-norm even reduces the weights with increasing residual.
This behavior explains the tolerance of these functions to
high amplitude noise (outliers) when compared to the `2
function.

Numerical Experiments

We tested the above algorithm and loss functions on a
modified (we added a thicker water layer) and decimated
version of the Marmousi model (Brougois et al., 1990). The
lateral and vertical grid spacing used is equal to 8 meters.
The wavefield propagation was carried out in the frequency
domain, using frequencies from 3 Hz up to 30 Hz with
increments of 0.4 Hz. The data set consist of 171 shots
(shot spacing of 60 meters) in a fixed-spread configuration,
with both sources and receivers at the surface. The
first/last shot and receiver are approximately at a distance
of 300 and 200 meters, respectively, from the edges of the
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(a) Smooth model.
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(b) Sloth (squared slowness) perturbation in s2/m2.

Figure 2: (a) Background model and (b) perturbation.

domain. Figures 2a and 2b show, respectively, the smooth
background velocity model used as migration velocity and
the exact sloth perturbation model obtained by subtracting
the smoothed model (obtained by box filtering of 25× 25
samples) from the unsmoothed one.

This data set was corrupted with a mix of Gaussian noise
(SNR = 6 for all frequencies) and high amplitude noise.
These outliers were simulated by adding high amplitude
Gaussian noise randomly to 2% and 5% of all shots and
receivers, respectively. Figure 3 depicts one frequency
slice of the data used in this numerical experiment after
the addition of noise.

The inversion procedure was realized using the HDS L-
BFGS algorithm as schematized in Algorithm A.1. We
tested all three loss functions detailed in Table 1. For
comparability, we chose a fixed number of 50 iterations,
which is roughly equivalent to 9 passes over the full
data set for the batch-size parameters used. A pass
corresponds to the evaluation of both the gradient and
objective functions for all shots that make part of the data
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Figure 3: Frequency slice (at 14 Hz) of the corrupted data
set used in the tested LSM procedure.

set.

For comparison, we also applied the LSM procedure
using the conventional L-BFGS algorithm with the same
number of iterations and using the Student’s t loss function.
The relative decrease of the objective function for both
the HDS and conventional L-BFGS methods is plotted
in Figure 4. This graph shows that after 50 iterations,
both algorithms attain practically the same reduction of the
objective function. However, the HDS L-BFGS algorithm
attains this result using five times less passes over the
data set. We see that for this particular problem, the
HDS L-BFGS procedure with its computationally cheaper
iterations is as useful as the conventional one with more
expensive iterations.

In this example, the use of the HDS L-BFGS algorithm
significanlty reduced the computational requirements of the
LSM procedure. The number of function and gradient
evaluations were reduced by a factor of five. Since the
computing of both the function and gradient values is the
most demanding part of the optimisation procedure, these
reductions translated into a total runtime reduction of more
than 80%.

Results

The results of the inversion after 50 iterations are shown
in Figure 5. We recognize that the migrated image using
the `2 norm (Figure 5a) is compromised due to the noise
that created strong artifacts in various parts of the image.
Even the relative amplitudes of the reflectors are affected.
The results for both `1 and Student’s t-norm are cleaner
and shown better subsurface images. The `1-norm result is
somewhat cleaner ihn terms of artifacts than the Student’s
t-norm results. The images 5c and 5d are interesting to
compare, since the former was calculated using the HD
L-BFGS method while the latter used the conventional L-
BFGS method. Both images have almost the same quality
level and differences are very hard to spot. On the one
hand, the artifacts in image 5c seem to be a little weaker
than in the conventional result of Figure 5d. On the other
hand, the latter image shows a small amplitude boost
throughout the section in comparison to Figure 5c.
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Figure 4: Relative objective function progression for the
Student’s loss function during the optimization procedure
for both Hybrid Deterministic-Stochastic L-BFGS (HDS L-
BFGS) and conventional L-BFGS. The relative objective
functions values shown here were calculated for both
algorithms using a full evaluation of the objective function.

Finally, to allow for a more detailed analysis, the graph in
Figure 6 shows the resulting depth profile at the horizontal
position x = 6608 m as obtained by the four inversions. This
region is one of the most complex parts of this model. The
graph shows a good agreement of the inversion results
using the more robust loss functions with the true model
(black line). As expected, the `2-norm result (red line) fails
to adequately recover the sloth perturbations. The results
usint the Student’s t-norm with both L-BFGS algorithms
are very similar to each other. It is to be noted that at
some places of the section, particularly in the bottom part,
all algorithms had difficulties in fitting the higher contrasts
present in the model.

Discussion

There are some imaging problems in the bottom left
corner of all four sections in Figure 5. These problems
can be attributed to the use of the Hessian diagonal as
preconditioner. The reason is this region presents a high
velocity contrast, even in the migration velocity model after
the smoothing procedure, and it is also positioned at the
far left corner of the model where data coverage is poor.
These conditions generate a high amplitude on the inverse
diagonal used during the application of the L-BFGS matrix.
A possible solution to this problem includes adding a small
term to regularize the division or using this preconditioner
for a limited number of iterations.

Conclusion

In this work, we have investigated the ability of the LSM
procedure to recover the perturbation model even under
heavy noise. Our results demonstrate that LSM can
work under these conditions if a suitable loss function is
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(a) Loss function `2 norm.
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(b) Loss function `1 norm.
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(c) Loss function Student’s t-norm.
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(d) Loss function Student’s t-norm, conventional L-BFGS.

Figure 5: Inversion results using the HDS L-BFGS algorithm for different loss functions (5a, 5b, 5c) and conventional L-BFGS
algorithm (5d).

employed. Both the `1 norm and the Student’s t-norm have
shown themselves more stable with regard to outliers than
the `2 norm conventionally used in LSM.

In the algorithmic part of the present investigation, we
have seen that the HDS L-BFGS algorithm is very
interesting in this application since it can reduce the
computational requirements considerably while, at the
same time, providing the same quality level as the more
expensive conventional L-BFGS algorithm. In our example,
the overall runtime economy amounted to more than 80%.
It is important to remark that the convergence for this
method is guaranteed only for smooth functions. Despite
of that, the `1 optimization result with the HDS L-BFGS
algorithm is adequate. This behavior has been previously
observed in other settings, as shown by Brossier et al.
(2010).
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