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Abstract

In this work we present an application of the least-
squares migration in the Image Domain with sparsity
constraints. It is known that linear algorithms based on L,-
norm improve the image resolution, altough restricted to
the original bandwidth of the seismic data. On the other
hand, non-linear algorithms (based on convex
optimization) with sparsity constraint are able to extend
the image spectral bandwidth resulting in a super-
resolution depth-imaging technique even if provided with
incomplete measurements. We give an overview of the
mathematical formulation and show a numerical
application on a synthetic model showing significant
correction on the migration amplitude and impressive gain
in resolution when compared to the conventional
migration algorithm.

Introduction

One of the earliest applications of least-squares migration
was realized by Nemeth, Wu and Schuster, 1999, in the
data domain. Later, Hu, Schuster and Vasalek (2001)
worked out the least-squares migration in the image
domain, but naming it as migration deconv olution. In their
work, they interpreted the Hessian with the concept of the
Point Spread Function, ubiquitously used in the image
processing, medical imaging and astronomy community
to retrieve images with higher resolution (see Figure 1).
However, only recently least-squares migration has been
applied in large size 3D imaging projects (Fletcher et al.,
2012 and Letki et al. 2015).

The power behind least-squares migration comes from a
different mind-set which was envisioned by Albert
Tarantola more than 30 years ago: “Imaging will not be
based on principles, but on well-posed questions about
the properties of the Earth’s interior” (Tarantola, 1986).
Understanding the migration problem as an inversion
problem allows not only for correcting the migration
amplitudes even on geologically complex models, but to
drastically increase the image resolution.

To achieve this goal, this work combines the least-
squares migration in the Image Domain, using the
concept of Point Spread Function, with the profound ideas
of the vibrant area of compressive sensing and sparse
recovery, to achieve super-resolution in depth imaging.

- -

Figure 1: (A) An original Hubble image with the flawed
mirror. (B) Image with PSF processing. (C) Image after
Hubble’s lens correction. (D) Image after lens correction
and PSF processing. Note that the PSF processed image
(B) has resolution equivalent to the image after the lens
correction (C), but it is further enhanced with the PSF
processing (D). [Figure adapted from Jansson, P. A.,

1997]

To grasp the essence of the interesting results achieved
by the compressive sensing community, we present on
Figure 2 (left) the matrix completion problem. It consists
of filling in the missing entries of a partially observed
matrix, X, which seems like to be an unsolvable problem.
Howev er, with some underlying hy pothesis such as low-
rank, there are theorems that prove that such matrices
can be, in most cases, filled exactly (Candés and Recht,
2009). An example of application is the Netflix problem, in
which the presented matrix is partially filled with
customers’ evaluation of movies. For this problem, the
low-rank hypothesis is reasonable since many people
share the same taste in movies, providing an underlying
structure to the matrix. Netflix awarded researchers the
amount of $1M for solving this problem (Netflix, 1997-
2009). More examples and applications of signal and
image recov ery from highly incomplete data can be found
in (Candés and Romberg, 2005).

Of greater concern to this work, is a related problem — the
spectral completion problem (Figure 2 (right)), which
consists of filling the amplitude spectrum of seismic image
even with incomplete and bandlimited observed data.
This work shows, using a synthetic example, that least-
squares migration with sparsity hypothesis utilizing
techniques of convex optimization is able to provide a
super-resolution image in depth, recovering most of the
original reflectivity, extending its original spectrum
bandwidth and correcting the depth amplitudes.
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Figure 2: (left) The matrix completion problem is the task
of filling in the missing entries of a partially observed
matrix, X (right) The spectral completion problem is the
task of filling the unrecorded amplitude spectrum of
observed data. Both are ill-posed problems unless
underly ing hy pothesis or constraints are added.

Least-squares migration

The least-squares migration may be formulated as an
inversion problem in which the objective is to find the
reflectivity (or the image), r, which best explains the
observed data according to a least squares objective
function E (r):

1
r=argmin E(r) = Ellu(r) —-dl* @

where u is the synthetic data modeled by a linear
equation (Born modeling) and d is the observed data. The
least squares solution of equation (1) is:

Hr = —VE , (2)
that is mathematically (but not numerically) equiv alent to
r=—H VE. (3)

It is possible to deduce that VE = JTd = m corresponds to
the traditional migration. JT is the adjoint of the Born
modeling operator J and H =JT] is called the Hessian
which is the second derivatives of E(r).

The remarkable difference between the traditional

migration and the least squares migration is the presence

of the Hessian H. It is known that the Hessian is a

spatially variant operator which encodes:

. lllumination from the source and the receiver
wav efield.

. Resolution associated with the band limited nature of
the seismic signal.

e Wavelet signature employed on the migration and
modeling.

One concludes, therefore, that neglecting these effects

(which is often done in traditional imaging schemes)

plagues the final quality and reliability of the seismic

images delivered to the interpreters.

On the other hand, the explicit computation and the
storage of the Hessian (as a matrix, for example) is
computationally infeasible, since the number of its
elements is the square of the number of parameters in the

2
model (i. e., (NyNyN,)" where N; is the number of grid
points in the direction i). This is the reason why it is

imperative to interpret the Hessian as an operator. The
approach to solve equation (2) distinguishes the
application domain of the least-squares migration
(Fletcher et al, 2016). A summarized comparison of the
algorithms is given in Table 1.

e Data domain: From the interpretation that H =Ty,
one solves the problem of Equation (1) by using the
Born modeling (encoded in the operator J) and by the
migration operator ]T. In this formulation, the
objective function is done by a comparison between
modeled and procecessed field data, that is, in the
data domain. The gradient of this objective function
corresponds to the migration of the data residual.
Usually, the model is updated following a steepest
descent or pre-conditioned conjugate gradient
scheme (Dai et. al, 2012). If no blending or
decimation strategy is employed, each iteration of
this algorithm has the computational cost of a direct
modeling of the dataset and a traditional migration.

e Image domain: The image-domain least-squares
migration also comes from the interpretation that
H =JTJ. But, on this formulation, one evaluates the
Hessian in predefined points of the model by the
Born modeling of unit scattering followed by a
traditional migration. The outputs of this scheme are
the so called Point Spread Functions (PSFs), which
describe the response of an imaging system to a
point reflectivity. More importantly, the PSFs explicitly
encode the illumination and blurring effects present in
the seismic imaging process. The computational cost
to obtain one grid of PSFs is equal to a direct
modeling and a traditional migration. After the
retriev al of the Hessian in the specific points, one can
utilize the operator H as a multidimensional spatially
variant conv olution-like operator and implement an
iterative optimization algorithm to reduce the
difference between Hr and m.This comparison is
realized in the image domain and it is a post-
migration operation, which can be done on pre- or
post-stacked image gathers.

In this work, we utilize the image domain formulation, but
one should be aware that the sparsity constraint can be
applied in both formulations.

Table 1: Comparison of the distinct approaches for least-
squares migration d is the observed data, J is the
linearized modeling operator (Born modeling), r is the
reflectivity and and m is the traditional migration.

Born Trad. LSM Data LSM Image
Mod. Migr. Domain Domain

u=Jr m=Jd r=UTlYyd r=0"1""m

Figure 3 indicates what is necessary for the evaluations
of the Point Spread Function: (1) to choose a humber of
unit scattering grids, which should be the most compact
possible but without the interference from neighboring the
Point Spread Functions, (2) estimation of the source
signature (wavelet) and (3) a velocity model for the Born
modeling and migration. Also, the geometry of acquisition
should be provided in order to model the migration
response for the acquired dataset.
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;"ScatteFing Grid Points + Wavelet + Velocity Model
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Cd
Point Spread Function

Figure 3: Scattering grid points, wavelet and velocity
model (top) are necessary to estimate the Point Spread
Functions by wavefield modeling. One can observe the
distortion on the deepest Point Spread Functions due to
the velocity model v ariations.

Sparsity Constraint

A traditional approach for least-squares migration in the
Image Domain is to consider the [L,-norm objective
function (Valenciano et al., 2009), aiming to retrieve the
reflectity r, such that,

1 2

¢, *lHr —ml 4)

r =argmin E(r) = %

That is, r is the reflectivity which minimizes the L,-norm of
the difference between the migrated image, m, and the
reflectivity response to the Hessian or its approximation
using the Point Spread Functions. The term Cd‘l/z is a
preconditioner to the inversion problem, and one popular
choice is to use the pseudo-Hessian (Shin et. al, 2001),
which corresponds to the compensation for the

illumination by the source wav efield.

A computationally affordable solution to the problem (4) is
to apply an iterative algorithm, such as the steepest-
descent scheme:

Tn41 = Ty — aCd_lHT(Hrn -m) (5)

where n is the iteration number and ¢ is the scale-factor.
It is known that linear iterative algorithms based on [,-
norm improve the image resolution and corrects for

illumination effects, but the bandwidth of the outcome is
restricted same as the input seismic image (Rosa, 2010).

o further increase the image resolution, one may impose
a sparsity constraint. As explained in Figure 4, applying
an L,-norm regularization is a known technigue to sparsify
the solution of aninverse problem (Candés and Romberg,
2005). One way to do it is by adding a regularization term
to the objective function (Fletcher, 2012):

2 2
CdZ[Hr —ml +;|r|p (6)

r = argmin EG) ZE

where |rl, is the Ly-norm of the reflectivity. However,
there are some practical issues with this approach. The
Ly-norm is not differentiable for p <1, so in practice it
needs an stabilization factor. Furthermore, the estimating
the regularization factor A is not intuitive and usually
requires exhaustiv e testing and it is hard to generalize for
dif f erent applications.

A preferred approach is the penalty method (Peters &
Herrmann, 2017), in which the problem (6) is restated as
2

1
¢, 2[Hr — ml|| such that Irl, <=

@)

r = argminE () =§

In the case of the L;-norm, the iterative solution of
problem (7) can be implemented by the successive
application of the soft-thresholding operation (Donoho
and Jonhstone, 1994) (which diminishes the Li-norm) at
the update direction (which decreases the L,-norm):

Tne1 =St (rn — aH" (Hr, — m)) (8)
in which S is the point-wise operation defined as
r+1, if r<-t
s =1o, if Irl<t. 9

r—1, if r>1
L2 Regularization L1 Regularization

N

\ L2 \ L2

Hr=m

|T|2f Ty [[r[l1

AN
SPNERVAE

Figure 4: Schematic comparison of L; and L,
regularization. The solution of the least-squares migration
problem, r,, in the intersection of the hyperplane Hr =m
and the Ly-ball llrll, for p=1o0r2. L, regularization
provides a minimum distance solution, but not a sparse
solution since the components favors to be non-zero.
Since the Li-ball is diamond shaped the solution to this
problem usually falls on one of the edges, where most of
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the components of the solution vanishes. [Figure adapted
from (Tibshirani, 1996)].

Numerical Application

A numerical application of the least-squares migration
with sparsity constraint is realized on a synthetic model
with the dimensions and characteristics of some regions
of the pre-salt area of the Santos Basin, in Brazil, shown
in Figure 5. We put a reference horizontal reflector, with
constant reflectivity, to the reflectivity model, at the depth
of 7km for analysis of the resolution and illumination
effects. The dataset utilized for this numerical application
was generated with Born modeling, which ensures that no
(internal) multiples are generated from the reflectivity
model. For the data modeling, it was used a towed-
streamer geometry of acquisition with receiv er cables of 6
km offset and the source signature utilized was a Ricker
wav elet with 45 Hz cut frequency.

- :4--\'-1531537?’;\:,5 e A =10
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Figure 5: Synthetic model for the application of the LSM
(A) The velocity model for the evaluation of the Point
Spread Functions (modeling and migration). (B)
Reference reflectivity model. Observe that at 7 km depth
there is a reference constant reflector. The dashed black
region corresponds to the zoomed region correspondent
to Figure 6.
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Figure 6: Application of least-squares migration in the
Image Domain for the outlined region of the synthetic
model of Figure 5. (A) Reference reflectivity. (B)
Traditional RTM (C) Least-squares migration with [,-
norm. (D) Least-squares migration with sparsity constraint
(L,-norm). On the top of each figure it is displayed the
amplitude extracted on the reference reflector. One
should note the variation of amplitude observed in the
traditional migration (B), which is significantly reduced in
the least-squares migration (C) and (D). Also, it is visible
the considerable gain in resolution using sparsity
constraint comparing (C) to (D).
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The results of the application of the least-squares
migration are display ed in Figure 6, which shows only the
region of interest. Comparing the correct reflectivity
(Figure 6A) with the result of traditional Reverse Time
Migration (RTM) (Figure 6B) one realizes how significant
the illumination effect is, which can be seen by the
amplitude extracted at the depth of the reference
reflector. It is also striking the loss of resolution on the
image. The result of least-squares migration with f,-norm
(Figure 6C) improves the image resolution by reducing
the side-lobes of the image in the reference reflector
depth and greatly corrects for the amplitude effects. Even
greater resolution gain is seen in the least-squares
migration with L, constraint (Figure 6D), in which the
reference reflector is mostly recovered and the image is
much sharper. Figure 7 contains the normalized
spectrum of the images shown in Figure 6, which
reinforces the previous statements: (1) The spectrum is
broadened with the least-squares migration with ,-norm
iterative algorithm, but restricted to the bandwidth of the
RTM image. (2) The recovery of the image’s spectrum in
the higher wavenumbers is only achieved by the least-
squares migration with [, constraint.

We emphasize that this gain in resolution with illumination
correction could not be done with a simple trace-by -trace
approach since the lateral and depth wavefield
illumination and resolution should be taken into account.
Also, the non-stationary property of the Point Spread
Functions are a needful requisite to the modelling stage,
thus allowing to remove the illumination effects and
correctly restore the reflectivity.

k, (1/m)

Figure 7: Normalized mean v ertical spectra of the images
shown in Figure 6. Note that the traditional RTM consists
a bandlimited image, whose its spectrum is broadened by
least-squares migration with L,-norm, restricted to the
original bandwidth of the input. However, only the least-
squares migration with sparsity constraint (L,;-norm) can
fill the wav elengths closer to the true reflectivity.

Discussion

The application of the sparsity constraint for least-squares
migration with real data is more challenging, since noise
is present and usually viscoelastic effects are not
accounted forthe retrieval of the Point Spread Functions,

due increase in computational cost or difficulty on
obtaining the viscoelastic parameters. Migration
defocusing may also happen due to incorrect migration
velocity model. Such an error will not be corrected by the
least-squares migration. Therefore, some practical
considerations are helpful in such applications:

e Warm-start with L2 Norm: Since the sparsity
constraint leads to reduction in the image amplitude,
it is preferable to apply it after the image is balanced
and the side-lobes of the reflection are diminished.
Therefore optimization with L,-norm can be applied
as a warm-start and as initial solution for the
optimization with the L; constraint.

e Adaptive thresholding: Warm-starting with the L,-
norm optimization may leave some amplitude
unbalance in the image. In this case, adaptive
thresholding may be used. For this, the penalty
parameter 7 is promoted to be a spatially variant
function and the thresholding may be defined by a
percentage of the root mean square values within
some predefined window.

e  Structure-oriented filtering: The presence of noise
or undesired events such as multiples in the migrated
image may reduce the quality of the least-squares
migration result. In this case, other constraints such
as structure-oriented filtering (Hale, 2009) can be
imposed and interpreted as an additional geological
constraint to inversion problem.

Another improvement to the proposal of this work is to
use more sophisticated optimization schemes such as the
Gradient Projection for Sparse Reconstruction (GPSR)
(Figueiredo et al. 2007), Spectral Projected Gradient - L1
(SPG-L1) (van den Berg and Friedlander, 2008), Sparse
Reconstruction by Separable Approximation (SpaRSA)
(Wright et al., 2009), among others. Even though these
algorithms rely on the basic idea of the iterative shrinkage
method, they have specialized line-search recipes and
accelerating strategies built-in, which yield more
performance in a variety of optimization problems.

It should also be emphasized that L, regularization is not
restricted to the space domain. Applications on wav elet,
curv elet, total v ariation or other domains can be employ ed
according to each case of interest.

Conclusions

We presented an application of the least-squares
migration in the Image Domain with sparsity constraints,
resulting in a super-resolution depth-imaging technique
even though the input was a bandlimited image plagued
with illumination issues. This was made possible by a
mathematical formulation with sparsity promotion method.
Also, this work shows that the least-squares migration
can correct the migration amplitudes even on geologically
complex models, thus it should be considered in imaging
projects in order to provide the interpreters a more
reliable image.
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