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Abstract 

In this work we present an application of  the least-
squares migration in the Image Domain with sparsity  

constraints. It is known that linear algorithms based on 𝐿2-

norm improv e the image resolution, altough restricted to 

the original bandwidth of  the seismic data. On the other 

hand, non-linear algorithms (based on conv ex 
optimization) with sparsity  constraint are able to extend 

the image spectral bandwidth resulting in a super-

resolution depth-imaging technique ev en if  prov ided with 

incomplete measurements. We giv e an ov erv iew of  the 
mathematical f ormulation and show a numerical 

application on a sy nthetic model showing signif icant 

correction on the migration amplitude and impressiv e gain 

in resolution when compared to the conv entional 

migration algorithm. 

Introduction 
 

One of  the earliest applications of  least-squares migration 

was realized by  Nemeth, Wu and Schuster, 1999, in the 

data domain. Later, Hu, Schuster and Vasalek (2001) 

worked out the least-squares migration in the image 
domain, but naming it as migration deconv olution. In their 

work, they  interpreted the Hessian with the concept of  the 

Point Spread Function, ubiquitously  used in the image 

processing, medical imaging and astronomy  community  
to retriev e images with higher resolution (see Figure 1). 

Howev er, only  recently  least-squares migration has been 

applied in large size 3D imaging projects (Fletcher et al., 

2012 and Letki et al. 2015). 

 
The power behind least-squares migration comes f rom a 

dif f erent mind-set which was env isioned by  Albert 

Tarantola more than 30 y ears ago:  “Imaging will not be 

based on principles, but on well-posed questions about 
the properties of  the Earth’s interior” (Tarantola, 1986). 

Understanding the migration problem as an inv ersion 

problem allows not only  f or correcting the migration 

amplitudes ev en on geologically  complex models, but to 

drastically  increase the image resolution. 
 

To achiev e this goal, this work combines the least-

squares migration in the Image Domain, using the 

concept of  Point Spread Function, with the prof ound ideas 
of  the v ibrant area of  compressiv e sensing and sparse 

recov ery , to achiev e super-resolution in depth imaging. 

 

Figure 1: (A) An original Hubble image with the f lawed 
mirror. (B) Image with PSF processing. (C) Image af ter 

Hubble’s lens correction. (D) Image af ter lens correction 

and PSF processing. Note that the PSF processed image 

(B) has resolution equiv alent to the image af ter the lens 
correction (C), but it is f urther enhanced with the PSF 

processing (D). [Figure adapted f rom Jansson, P. A., 

1997] 

To grasp the essence of  the interesting results achiev ed 

by  the compressiv e sensing community , we present on 

Figure 2 (left) the matrix completion problem. It consists 

of  f illing in the missing entries of  a partially  observ ed 
matrix, X,  which seems like to be an unsolv able problem. 

Howev er, with some underly ing hy pothesis such as low-

rank, there are theorems that prov e that such matrices 

can be, in most cases, f illed exactly  (Candès and Recht, 
2009). An example of  application is the Netf lix problem, in 

which the presented matrix is partially  f illed with 

customers’ ev aluation of  mov ies. For this problem, the 

low-rank hy pothesis is reasonable since many  people 

share the same taste in mov ies, prov iding an underly ing 
structure to the matrix. Netf lix awarded researchers the 

amount of  $1M f or solv ing this problem (Netf lix, 1997-

2009).  More examples and applications of  signal and 

image recov ery  f rom highly  incomplete data can be f ound 
in (Candès and Romberg, 2005). 

 

Of  greater concern to this work, is a related problem – the 

spectral completion problem (Figure 2 (right)), which 

consists of  f illing the amplitude spectrum of  seismic image 
ev en with incomplete and bandlimited observ ed data. 

This work shows, using a sy nthetic example, that least-

squares migration with sparsity  hy pothesis utilizing 

techniques of  conv ex optimization is able to prov ide a 

super-resolution image in depth, recov ering most of  the 
original ref lectiv ity , extending its original spectrum 

bandwidth and correcting the depth amplitudes. 
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Figure 2: (lef t) The matrix completion problem is the task 

of  f illing in the missing entries of  a partially  observ ed 

matrix, X. (right) The spectral completion problem is the 

task of  f illing the unrecorded amplitude spectrum of  

observ ed data. Both are ill-posed problems unless 

underly ing hy pothesis or constraints are added. 

Least-squares migration 
 

The least-squares migration may  be f ormulated as an 

inv ersion problem in which the objectiv e is to f ind the 
ref lectiv ity  (or the image), 𝒓, which best explains the 

observ ed data according to a least squares objectiv e 

f unction 𝐸 (𝒓): 

 

𝒓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸(𝒓) =
𝟏

𝟐
‖𝒖(𝒓) − 𝒅‖𝟐       (1) 

 
where 𝒖 is the sy nthetic data modeled by  a linear 

equation (Born modeling) and 𝒅 is the observ ed data. The 

least squares solution of  equation (1) is: 

 
                       𝑯𝒓 = −𝛁𝑬  ,                          (2) 

 
that is mathematically  (but not numerically ) equiv alent to 

 

                        𝒓 = −𝑯−𝟏𝛁𝑬  .                      (3) 

 

It is possible to deduce that 𝛁𝑬 = 𝑱𝑻𝒅 = 𝒎 corresponds to 

the traditional migration. 𝑱𝑻 is the adjoint of  the Born 

modeling operator 𝑱 and 𝑯 = 𝑱𝑻𝑱 is called the Hessian 
which is the second deriv ativ es of  𝐸(𝒓). 

 

The remarkable dif f erence between the traditional 

migration and the least squares migration is the presence 
of  the Hessian 𝑯. It is known that the Hessian is a 

spatially  v ariant operator which encodes:  

• Illumination f rom the source and the receiv er 

wav ef ield. 

• Resolution associated with the band limited nature of  

the seismic signal. 
• Wav elet signature employ ed on the migration and 

modeling. 

One concludes, theref ore, that neglecting these ef f ects 

(which is of ten done in traditional imaging schemes) 

plagues the f inal quality  and reliability  of  the seismic 
images deliv ered to the interpreters. 

 

On the other hand, the explicit computation and the 

storage of  the Hessian (as a matrix, f or example) is 
computationally  inf easible, since the number of  its 

elements is the square of  the number of  parameters in the 

model (i. e., (𝑁𝑥𝑁𝑦𝑁𝑧 )
2
 where  𝑁𝑖 is the number of  grid 

points in the direction 𝑖). This is the reason why  it is 

imperativ e to interpret the Hessian as an operator. The 

approach to solv e equation (2) distinguishes the 

application domain of  the least-squares migration 
(Fletcher et al, 2016). A summarized comparison of  the 

algorithms is giv en in Table 1.  
 

 Data domain: From the interpretation that 𝑯 = 𝑱𝑻𝑱, 
one solv es the problem of  Equation (1) by  using the 

Born modeling (encoded in the operator 𝑱) and by  the 

migration operator 𝑱𝑻. In this f ormulation, the 

objectiv e f unction is done by  a comparison between 
modeled and procecessed f ield data, that is, in the 

data domain. The gradient of  this objectiv e f unction 

corresponds to the migration of  the data residual. 

Usually , the model is updated f ollowing  a steepest 

descent or pre-conditioned conjugate gradient 
scheme (Dai et. al, 2012). If  no blending or 

decimation strategy  is employ ed, each iteration of  

this algorithm has the computational cost of  a direct 

modeling of  the dataset and a traditional migration. 
 

 Image domain: The image-domain least-squares 
migration also comes f rom the interpretation that 

𝑯 = 𝑱𝑻𝑱. But, on this f ormulation, one ev aluates the 
Hessian in predef ined points of  the model by  the 

Born modeling of  unit scattering f ollowed by  a 

traditional migration. The outputs of  this scheme are 

the so called Point Spread Functions (PSFs), which 
describe the response of  an imaging sy stem to a 

point ref lectiv ity. More importantly , the PSFs explicitly  

encode the illumination and blurring ef f ects present in 

the seismic imaging process. The computational cost 
to obtain one grid of  PSFs is equal to a direct 

modeling and a traditional migration. Af ter the 

retriev al of  the Hessian in the specif ic points, one can 

utilize the operator 𝑯 as a multidimensional spatially  

v ariant conv olution-like operator and implement an 

iterativ e optimization algorithm to reduce the 
dif f erence between 𝑯𝒓 and 𝒎.This comparison is 

realized in the image domain and it is a post-

migration operation, which can be done on pre- or 

post-stacked image gathers. 
 

In this work, we utilize the image domain f ormulation, but 
one should be aware that the sparsity  constraint can be 

applied in both f ormulations. 

 

Table 1: Comparison of  the distinct approaches f or least-

squares migration 𝒅 is the observ ed data, 𝑱 is the 

linearized modeling operator (Born modeling), 𝒓 is the 

ref lectiv ity  and and 𝒎 is the traditional migration. 

Born 
Mod. 

Trad. 
Migr. 

LSM Data 
Domain 

LSM Image 
Domain 

𝒖 = 𝑱𝒓 𝒎 = 𝑱𝑻𝒅 𝒓 = [𝑱𝑻𝑱]−𝟏𝑱𝑻𝒅 𝒓 = [𝑱𝑻𝑱]−𝟏𝒎 

 

Figure 3 indicates what is necessary  f or the ev aluations 

of  the Point Spread Function: (1) to choose a number of  

unit scattering grids, which should be the most compact 

possible but without the interf erence f rom neighboring the 

Point Spread Functions, (2) estimation of  the source 
signature (wav elet) and (3) a v elocity  model f or the Born 

modeling and migration. Also, the geometry  of  acquisition 

should be prov ided in order to model the migration 

response f or the acquired dataset.  
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Figure 3: Scattering grid points, wav elet and v elocity  

model (top) are necessary  to estimate the Point Spread 

Functions by  wav ef ield modeling. One can observ e the 
distortion on the deepest Point Spread Functions due to 

the v elocity  model v ariations. 

Sparsity Constraint 
 

A traditional approach f or least-squares migration in the 

Image Domain is to consider the 𝐿2-norm objectiv e  

f unction (Valenciano et al., 2009), aiming to retriev e the 

ref lectity  𝒓, such that, 

                 𝒓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸(𝒓) =
1

2
‖𝐶

𝑑

−
1

2[𝑯𝑟 − 𝑚]‖

2

. (4) 

That is, 𝒓 is the ref lectiv ity which minimizes the 𝐿2-norm of  

the dif f erence between the migrated image, 𝑚, and the 
ref lectiv ity  response to the Hessian or its approximation 

using the Point Spread Functions. The term 𝐶𝑑
−1/2 is a 

preconditioner to the inv ersion problem, and one popular 

choice is to use the pseudo-Hessian (Shin et. al, 2001), 

which corresponds to the compensation f or the 

illumination by  the source wav ef ield. 

A computationally  af f ordable solution to the problem (4) is 

to apply  an iterativ e algorithm, such as the steepest-

descent scheme: 

                      𝑟𝑛+1 = 𝑟𝑛 − 𝛼𝐶𝑑
−1𝑯𝑻(𝑯𝑟𝑛 − 𝑚)  ,       (5) 

 

where 𝑛  is the iteration number and 𝛼 is the scale-f actor. 

It is known that linear iterativ e algorithms based on 𝐿2-

norm improv e the image resolution and corrects f or 

illumination ef f ects, but the bandwidth of  the outcome is 

restricted same as the input seismic image (Rosa, 2010). 

 

o f urther increase the image resolution, one may  impose 

a sparsity  constraint. As explained in Figure 4, apply ing 

an 𝐿1-norm regularization is a known technique to sparsify  
the solution of  an inv erse problem (Candès and Romberg, 

2005). One way  to do it is by  adding a regularization term 

to the objectiv e f unction (Fletcher, 2012): 

𝒓 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸(𝒓) =
1

2
‖𝐶

𝑑

−
1

2[𝑯𝑟 − 𝑚]‖

2

+
𝜆

𝑝
|𝒓|𝑝 (6) 

where |𝒓|𝑝 is the 𝐿𝑝-norm of  the ref lectiv ity . Howev er, 

there are some practical issues with this approach. The 

𝐿𝑝-norm is not dif f erentiable f or 𝑝 ≤ 1 , so in practice it 

needs an stabilization f actor. Furthermore, the estimating 

the regularization f actor 𝜆 is not intuitiv e and usually  

requires exhaustiv e testing and it  is hard to generalize f or 
dif f erent applications. 

A pref erred approach is the penalty  method (Peters & 
Herrmann, 2017), in which the problem (6) is restated as 

 

𝒓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸 (𝒓) =
1

2
‖𝐶

𝑑

−
1

2 [𝑯𝑟 − 𝑚]‖

2

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 |𝒓|𝑝 < 𝜏.            

(7) 

In the case of  the 𝐿1-norm, the iterativ e solution of  

problem (7) can be implemented by  the successiv e 

application of  the sof t-thresholding operation (Donoho 

and Jonhstone, 1994) (which diminishes the 𝐿1-norm) at 

the update direction (which decreases the  𝐿2-norm): 

             𝑟𝑛+1 = 𝑆𝜏 (𝑟𝑛 − 𝛼𝑯𝑻(𝑯𝑟𝑛 − 𝑚))                  (8) 

in which 𝑆𝜏 is the point-wise operation def ined as 

                𝑆𝜏
(𝑟) = {

𝑟 + 𝜏,     𝑖𝑓   𝑟 < −𝜏

0,           𝑖𝑓   |𝑟| ≤ 𝜏

𝑟 − 𝜏,   𝑖𝑓   𝑟 > 𝜏

.                  (9) 

 
Figure 4: Schematic comparison of  𝐿1 and 𝐿2 

regularization. The solution of  the least-squares migration 
problem, 𝑟∗, in the intersection of  the hy perplane 𝑯𝑟 = 𝑚  

and the 𝐿𝑝-ball ‖𝒓‖𝑝 f or 𝑝 = 1 𝑜𝑟 2 . 𝐿2 regularization 

prov ides a minimum distance solution, but not a sparse 
solution since the components f av ors to be non-zero. 

Since the 𝐿1-ball is diamond shaped the solution to this 

problem usually  f alls on one of  the edges, where most of  
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the components of  the solution v anishes. [Figure adapted 

f rom (Tibshirani, 1996)]. 

 

Numerical Application 

A numerical application of  the least-squares migration 

with sparsity  constraint is realized on a sy nthetic model 
with the dimensions and characteristics of  some regions 

of  the pre-salt area of  the Santos Basin, in Brazil, shown 

in Figure 5. We put a ref erence horizontal ref lector, with 

constant ref lectiv ity, to the ref lectivity  model, at the depth 

of  7km f or analy sis of  the resolution and illumination 
ef f ects. The dataset utilized f or this numerical application 

was generated with Born modeling, which ensures that no 

(internal) multiples are generated f rom the ref lectiv ity  

model. For the data modeling, it was used a towed-

streamer geometry  of  acquisition with receiv er cables of  6 
km of f set and the source signature utilized was a Ricker 

wav elet with 45 Hz cut f requency . 

 

 

Figure 5: Sy nthetic model f or the application of  the LSM 

(A) The v elocity  model f or the ev aluation of  the Point 

Spread Functions (modeling and migration). (B) 

Ref erence ref lectiv ity model. Observ e that at 7 km depth 

there is a ref erence constant ref lector. The dashed black 

region corresponds to the zoomed region correspondent 

to Figure 6. 

 

 

Figure 6: Application of  least-squares migration in the 

Image Domain f or the outlined region of  the sy nthetic 
model of  Figure 5. (A) Ref erence ref lectiv ity . (B) 

Traditional RTM (C) Least-squares migration with 𝐿2-
norm. (D) Least-squares migration with sparsity  constraint 

(𝐿1-norm). On the top of  each f igure it is display ed the 
amplitude extracted on the ref erence ref lector. One 

should note the v ariation of  amplitude observ ed in the 

traditional migration (B), which is signif icantly  reduced in 
the least-squares migration (C) and (D). Also, it is v isible 

the considerable gain in resolution using sparsity  

constraint comparing (C) to (D). 
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The results of  the application of  the least-squares 

migration are display ed in Figure 6, which shows only  the 

region of  interest. Comparing the correct ref lectiv ity  
(Figure 6A) with the result of  traditional Rev erse Time 

Migration (RTM) (Figure 6B) one realizes how signif icant 

the illumination ef f ect is, which can be seen by  the 

amplitude extracted at the depth of  the ref erence 

ref lector. It is also striking the loss of  resolution on the 

image. The result of  least-squares migration with 𝐿2-norm 
(Figure 6C) improv es the image resolution by  reducing 

the side-lobes of  the image in the ref erence ref lector 

depth and greatly  corrects f or the amplitude ef f ects. Ev en 

greater resolution gain is seen in the least-squares 

migration with 𝐿1 constraint (Figure 6D), in which the 

ref erence ref lector is mostly  recov ered and the image is 
much sharper. Figure 7 contains the normalized 

spectrum of  the images shown in Figure 6, which 

reinf orces the prev ious statements: (1) The spectrum is 

broadened with the least-squares migration with 𝐿2-norm 
iterativ e algorithm, but restricted to the bandwidth of  the 
RTM image. (2) The recov ery  of  the image’s spectrum in 

the higher wav enumbers is only  achiev ed by  the least-

squares migration with 𝐿1 constraint. 

We emphasize that this gain in resolution with illumination 

correction could not be done with a simple trace-by -trace 

approach since the lateral and depth wav ef ield 

illumination and resolution should be taken into account. 

Also, the non-stationary  property  of  the Point Spread 
Functions are a needf ul requisite to the modelling stage, 

thus allowing to remov e the illumination ef f ects and 

correctly  restore the ref lectiv ity . 

 

 

Figure 7: Normalized mean v ertical spectra of  the images 
shown in Figure 6. Note that the traditional RTM consists 

a bandlimited image, whose its spectrum is broadened by  

least-squares migration with 𝐿2-norm, restricted to the 

original bandwidth of  the input. Howev er, only  the least-
squares migration with sparsity  constraint (𝐿1-norm) can 

f ill the wav elengths closer to the true ref lectiv ity . 

Discussion 

The application of  the sparsity  constraint f or least-squares 
migration with real data is more challenging, since noise 

is present and usually  v iscoelastic ef f ects are not 

accounted f or the retriev al of  the Point Spread Functions, 

due increase in computational cost or dif f iculty  on 

obtaining the v iscoelastic parameters. Migration 

def ocusing may  also happen due to incorrect migration 
v elocity  model. Such an error will not be corrected by  the 

least-squares migration. Theref ore, some practical 

considerations are helpf ul in such applications: 

 Warm-start with L2 Norm: Since the sparsity  
constraint leads to reduction in the image amplitude, 

it is pref erable to apply  it af ter the image is balanced 

and the side-lobes of  the ref lection are diminished. 

Theref ore optimization with 𝐿2-norm can be applied 

as a warm-start and as initial solution f or the 

optimization with the 𝐿1 constraint. 

 

 Adaptive thresholding: Warm-starting with the 𝐿2-

norm optimization may  leav e some amplitude 

unbalance in the image. In this case, adaptiv e 
thresholding may  be used. For this, the penalty  

parameter 𝜏 is promoted to be a spatially  v ariant 

f unction and the thresholding may  be def ined by  a 

percentage of  the root mean square v alues within 

some predef ined window. 

 

 Structure-oriented filtering: The presence of  noise 

or undesired ev ents such as multiples in the migrated 
image may  reduce the quality  of  the least-squares 

migration result. In this case, other constraints such 

as structure-oriented f iltering (Hale, 2009) can be 

imposed and interpreted as an additional geological 

constraint to inv ersion problem.  

Another improv ement to the proposal of  this work is to 
use more sophisticated optimization schemes such as the 

Gradient Projection f or Sparse Reconstruction (GPSR) 

(Figueiredo et al. 2007), Spectral Projected Gradient - L1 

(SPG-L1) (v an den Berg and Friedlander, 2008), Sparse 
Reconstruction by  Separable Approximation (SpaRSA) 

(Wright et al., 2009), among others. Ev en though these 

algorithms rely  on the basic idea of  the iterativ e shrinkage 

method, they  hav e specialized line-search recipes and 

accelerating strategies built-in, which y ield more 
perf ormance in a v ariety  of  optimization problems. 

It should also be emphasized that 𝐿1 regularization is not 
restricted to the space domain. Applications on wav elet, 

curv elet, total v ariation or other domains can be employ ed 

according to each case of  interest. 

Conclusions 

We presented an application of  the least-squares 
migration in the Image Domain with sparsity  constraints, 

resulting in a super-resolution depth-imaging technique 
ev en though the input was a bandlimited image plagued 

with illumination issues. This was made possible by  a 

mathematical f ormulation with sparsity  promotion method. 

Also, this work shows that the least-squares migration 

can correct the migration amplitudes ev en on geologically  
complex models, thus it should be considered in imaging 

projects in order to prov ide the interpreters a more 

reliable image. 
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