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Abstract

We address here the problem of estimating the
time and space varying residual wavelet to be
used in a broadband reflectivity inversion algo-
rithm. The usual form of wavelet estimation uses
a L2 norm inversion algorithm, which have some
limitations when few relevant reflection events
are present within a specific time window. We
propose the use of an alternative modified L1

norm to obtain a more robust estimation of the
residual seismic pulse. The robustness of the
method is illustrated with synthetic and field data
examples.

Introduction

Ideally, the ultimate goal of routine seismic pro-
cessing/imaging is to obtain a set of amplitude
volumes, where the amplitude of a given sample in
each volume corresponds to the P wave reflection
coefficiente at that subsurface position for a given
angle of incidence. Several steps of the seismic
processing flow aim to compensate for the effects
on the amplitude and phase spectra of the seismic
wavelet caused during its generation, recording and
propagation through the sub-surface. Ideally, these
steps should lead the effective seismic pulse to
approach a unit impulse.

Despite all these steps, which include debbubling,
ghost removal and compensation for absortion,
a residual wavelet will always be present in the
final image volumes, which imposes limits for the
resolution of the geological layers. One of the forms
of broadening the spectrum, in order to increase the
resolution of the images, is to apply a zero phase
deconvolution to the seismic volumes.

Wavelet estimation is an important part of the
deconvolution process (Portniaguine and Castagna,
2005), and has been the subject of recent research
related to the improvement of seismic resolution
(Zhou et. al., 2016).

Our goal is to estimate the time and space varying
residual zero-phase wavelet to be used in a sparse-
oriented deconvolution algorithm used in Petrobras
(Rosa, 2010). The standard form of wavelet esti-
mation uses a L2 norm inversion algorithm, which
have some limitations when few relevant reflection
events are present within a specific time window. To
illustrate these limitations, we use as a reference
throughout the paper the synthetic data correspond-
ing to a wedge model, as shown in Figure 1-a.

Figure 1: (a) Sinthetic data for a wedge model; (b)
amplitude spectra for the traces in (a). Trace 15, cor-
responds to a single interface (with less impedance
contrast) while trace 20 shows a tunning effect asso-
ciated with the two relections.
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Figure 1-b presents the spectra of the traces from
1-a. The spectrum of each individual trace shows
a particular pattern of ressonant frequencies, which
relates to the time delay between the top and bottom
reflections of the wedge. An importatnt property
represented in the figure is that all the individual
spectra share the same envelope, which is the
spectrum of the original pulse.
As we will show in the next sessions, a modified L1

norm is more suitable for a robust estimation of the
residual seismic pulse, than the usual L2 norm.

L2 norm wavelet estimation

The first step involves the transformation of the spec-
trum S(ω) in the function Y (ω), which in the discrete
formulation is given by

Yj = ln
Sj

ωα
j

, (1)

where Sj corresponds to the amplitude spectrum, ωj ,
is the frequency, and α is a positive exponent smaller
than one.
An usual way to formulate the problem of wavelet es-
timation for a time window with transformed spectrum
defined by Yj is to obtain the coefficients ai that de-
fines the polynomial Pj of degree N (Rosa and Ul-
rych, 1991):

Pj =
N

∑

i=1

aiω
i
j (2)

which minimizes the L2 norm error function

E2 =

M
∑

j=1

|Yj − Pj |
2. (3)

The solution is given by solving for the coefficients
(a1, a2, ..., aN ), the set of linear equations

∂E2(a1, a2, ..., aN )

∂ak

= 0, for k {1, N} (4)

which leads to

∑

i

∑

j

ωi+k
j ai =

∑

j

Yjω
k
j (5)

The wavelets estimated with the L2 norm (Equation
5), for 4 selected traces from Figure 1-a, are pre-
sented in Figure 2. The limitations of the L2 solution
to retrieve the true wavelet become apparent from
this figure.

Modified L1 norm wavelet estimation

In order to improve the pulse estimation, let’s first
analyse the residuals represented in Equation 3. Fig-
ure 3-a shows, for trace 50, the transformed spec-
trum Yj , and the polinomial solution Pj , and 3-b the
L2 residuals before squaring (that is, the L1 residu-
als) for the solution. In order to achieve the goal of
the solution Pj to approach the envelope of Yj we
should have an error function that penalizes only the
positive part of Yj − Pj in Figure 3-b.
Following this reasoning, we present Equation 6 as
a first attempt to define an error function whose mini-
mization would lead to the envelope of the trace spec-
trum as the solution.

E+
1 =

M
∑

j=1

{(Yj − Pj) + |Yj − Pj |}. (6)

Figure 2: L2 norm estimation results for 4 traces from
Figure 1. The traces are: 30 (top left), 35 (top right),
50 (bottom left), 60 (bottom right).

As we will discuss later in this paper, the solution of
this equation is achieved by an iterative inversion al-
gorithm. The residuals represented in Equation 6, for
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the specific case of the L2 solution for trace 50 are
depicted in Figure 4.

Figure 3: (a) Transformed spectrum Yj and the L2

norm solution for the fitting polynomial Pj ; (b) Resid-
uals for the L2 norm solution.

Although the solution of Equation 6 converges to the
desired envelope for low order polinomials (up to 4th

order), it becomes unstable for higher order, as illus-
trated in Figure 5. The evolution with iteration of the
residuals are shown in 5-a, while the evolution of the
solution is shown in 5-b. Although the first iterations
show convergence to the desired solution, the next
iterations diverge. The reason is that the error func-
tion, as defined by Equation 6, becomes zero for all
polinomial functions that have no intersection with the
transformed spectrum. The envelope is just one of
these functions.
In order to avoid solutions that diverge from the de-
sired envelope, we must introduce another term in the
objective function, that penalizes the negative residu-
als, but in a smaller scale than the positive residuals.
We define thus a new error function:

E±

1 =

M
∑

j=1

{[(Yj−Pj)+|Yj − Pj |]−β [(Yj−Pj)−|Yj−Pj |]} ,

Figure 4: Residuals for the objective function defined
by equation 6, for the same functions Yj and Pj used
in Figure 3.

Figure 5: (a) Evolution with iteration, of the residuals
for the E1+ solution; (b) evolution with iteration of the
fitting function Pj for the E1+ solution.
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where β is a scalar smaller than one. After regrouping
the terms

E±

1 =

M
∑

j=1

{(1−β) (Yj − Pj) + (1+β) |Yj − Pj |}. (7)

The residuals represented in Equation 7, for the spe-
cific case of the L2 solution for trace 50 are depicted
in Figure 6. If we compare with Figure 4, we can
see that the negative residuals are now present with
a small weight.

Figure 6: Residuals for the objective function defined
by Equation 7.

Representing the absolute value |Yj − Pj | by
√

(Yj − Pj)
2 we can apply equation 4 to E±

1 and ob-
tain the folowing set of equations for k = 1, 2, ..., N .

∑

i

(1 + β)
∑

j

ωi+k
j

√

(

Yj −
∑

i aiω
i
j

)2
ai =

(1 + β)
∑

j

Yjω
k
j

√

(

Yj −
∑

i aiω
i
j

)2
+ (1 − β)

∑

j

(−ωk
j ).

These set of non-linear equations should be solved
for the unknown coefficients ai. Linearization is
achieved using Iterative Reweighted Least Squares
(IRLS), which for iteration m ≥ 2 leads to the follow-
ing set of equations:

∑

i

∑

j

ωi+k
j

√

(

Yj −
∑

i a
(m−1)
i ωi

j

)2

+ ǫ

a
(m)
i =

∑

j

Yj
√

(

Yj −
∑

i a
(m−1)
i ωi

j

)2

+ ǫ

−
(1 − βm)

(1 + βm)

∑

j

ωk
j , (8)

which, for the specific case of, m = 1 reduces to the
norm 2 solution given by Equation 5.

In Equation 8 βm is an iteration dependent coef-
ficient, that decreases at a specified rate as the
iterations proceed. The initial value must be smaller
than one.

Figure 7 shows the evolution of the residuals,
as well as the evolution of the solution for a poli-
nomial of 6th order. The wavelets estimated with

Figure 7: (a) Evolution with iteration, of the residuals
for the E+−

1 solution; (b) evolution with iteration of the
fitting function Pj for the E+−

1 solution.

the modified L1 norm (using the iterative solution of
quation 8) for the same 4 traces used in Figure 2 are
presented in Figure 8. The wavelets estimated with
the modified L1 norm are clearly superior to retrieve
the true seismic pulse when compared to the ones
estimated with the L2 norm.

Examples

The first example refers to the same wedge model,
used throughout the paper to illustrate the concepts
that support the proposed form for the modified L1

norm. We applied the wavelet estimation inversion
for all traces, followed by the reflectivity inversion.

Fifteenth International Congress of The Brazilian Geophysical Society



CUNHA 5

The results are presented in Figure 9. The retrieved
reflectivity using the L1 norm wavelets are less
contaminated by artifacts when compared to the
reflectivity obtained with the L2 norm wavelets. The

Figure 8: Modified L1 norm estimation results for 4
traces from Figure 1. The traces are: 30 (top left), 35
(top right), 50 (bottom left), 60 (bottom right).

differences between the L2 and the modified L1 norm
estimates become more clear when we compare
the integrated reflectitvities, which correspond to
a band-limited version of the acoustic impedance.
Figure 10 shows the impedances from the two
reflectivity panels of Figure 9 (one for each norm), as
well as the impedance from the reflectivity inversion
using the true wavelet. The modified L1 result is
almost identical to the one with the correct wavelet.

The second example involves the application of
the modified L1 norm to a field data from Santos
basin (Brazil). A reflectivity inversion process was
applied to generate band-limited impedance data.
Figure 11-a shows the amplitude data, while 11-b
and 11-c, show the band-limited impedance using
the L2 and L1 norm respectively. The increase in
resolution with the L1 norm is clear from the figure.

Although no spectral balancing algorithm have been
applied in the process, the improvement achieved
with the L1 norm can be related to the better spectral
homogeneity present in it’s inverted reflectivity, as
demonstrated by Figure 12.

Conclusions

Wavelet estimation plays an inportant role in the pro-
cess of reflectivity inversion from band-limited seis-
mic data. The process, considering zero-phase
wavelets, is usually based on a smoothed version of
the spectrum of the seismic trace. This process may
be carried on a time and space window basis.
We introduced a modified L1 norm, which focus on
the minimization of positive residuals and leads to
a stable estimation of the spectrum envelope. Syn-
thetic and real data examples show that this new
norm provide a superior estimation of the residual
seismic pulse when compared to the wavelets esti-
mated using the L2 norm.

Figure 9: (a) Synthetic wedge model data; (b) sparse
deconvolution with L2 norm wavelet estimation; (c)
sparse deconvolution with the modified L1 norm
wavelet estimation.
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Figure 10: Retrieved impedance from deconvolution
with: (a) the true wavelet; (b) the L2 norm wavelet; (c)
the L1 norm wavelet.

Figure 11: Real data example: (a) amplitude data;
(b) band-limited impedance with L2 norm wavelet; (c)
band-limited impedance with L1 norm wavelet.

Figure 12: Spectra from Figure 11: amplitude data
(black); reflectivity with L2 norm wavelet (blue); re-
flectivity with L1 norm wavelet (red).
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