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Abstract 

The present paper focuses on rock physics analysis of well 
data, using a four-step workflow: model selection, 
calibration, analysis, and prediction. It is shown how 
different rock physics recipes from literature, as well as 
custom made, can be interactively created to predict elastic 
properties (��,	��, and density) from rock textural 
properties (total porosity, shale volume, etc.), ambient 
conditions (effective pressure, etc.) and fluid content. In the 
presented workflow, rock physics calibration is performed 
by a coupled non-linear least-squares scheme, so that all 
the elastic properties are simultaneously taken into 
account. Further, statistical analysis of the calibrated 
model is presented as a tool to assist model selection 
(such as, granular models and effective medium models) 
and to support comparison between rock layers (for 
example, comparing pore aspect ratio or cementation of 
two different reservoirs). Finally, the workflow includes a 
Markov Chain Monte Carlo algorithm to simultaneously 
estimate both the model’s parameters and the prediction 
uncertainties. Proper rock physics analysis, as presented 
in this paper, is a fundamental input for any geophysical 
interpretation and uncertainty assessment, from 
exploration prospects to reservoir characterization. 

Introduction 

Many published papers show the importance of using rock 
physics models for consistently predicting rock properties 
and rock types, [1-10]. For example, Grana [5] uses 
statistical rock physics to model the relationship between 
petrophysical and elastic properties, and applies it to drive 
seismic inversion to petrophysical properties and facies.  

The present work focuses on the rock physics modelling 
problem. Thus, it poses an important tool to assist 
subsequent steps in quantitative seismic interpretation. 

In this paper, we make four contributions: 

1 – Introduction of an interactive and flexible framework 
and respective data-structure for the creation of rock 
physics recipes, from basic rock physics formulas, such as 
modified Hertz-Mindlin [11] and Hashin-Shtrikman [12].  

2 – Application of multiple response non-linear least-
squares to calibrate theoretical rock physics models. The 
methodology employed here is fully adequate to seismic 

quantitative interpretation problem, since it calibrates 
density, �� and �� simultaneously.  

3 – Application of statistical tools for analyzing rock physics 
models and their fit.  

4 – Application of Markov Chain Monte Carlo (MCMC) 
technique to estimate simultaneously the uncertainty in the 
model’s parameters and predicted properties. 

Method 

The workflow presented in this paper, comprises four 
stages: model selection, calibration, analysis, and 
prediction. The geoscientist might feel the need to run the 
first three steps in this workflow multiple times until a 
satisfactory model is selected. The four steps are 
described next. 

A: Rock Physics model construction 

The rock physics equations available in the literature, will 
usually yield no reasonable result, unless coupled with 
other equations. For example, soft sand model consists, 
basically, of chaining Hertz-Mindlin, Hashin-Shtrikman and 
Gassmann equations [12]. 

A tree is the most appropriate data structure to create more 
complex rock physics recipes from basic rock physics 
equations (for example, when modeling shaly sandstones, 
as in Figure 1). In the tree, equations are nodes, and they 
may receive multiple arrows from parent nodes. The tree 
leaves are the inputs and parameters of the recipe. The 
inputs are the petrophysical well logs, and the parameters 
are additional scalars, such as Mineral Bulk and Shear 
Modulus, coordination number, etc. The parameters and 
inputs may come into the model through any equation 
node. 

The user must indicate the initial guess for the parameters 
and their bounds ����, ��
� . 
The equation nodes may have multiple outputs, because 
some rock physics equations output more than one 
property simultaneously, for example, bulk and shear 
modulus. At the root node of the calculus tree, the recipe 
must have as outcomes, the elastic properties of interest, 
for instance, the triads: density, �� and ��; or density, �� 
and Poisson’s ratio; etc. The examples in this paper used 
density, �� and �� ��⁄ . 

B: Model Calibration 

The mathematical tool used for the calibration step is non-
linear multiple response (or multivariate) regression. Bates 
and Watts [13] give a broad introduction to non-linear 
regression, and, more specifically, to multiple response 
non-linear regression. In this kind of regression, one is  
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Figure 1: Workflow for predicting Bulk and Shear Modulus of shaly 
sandstones, according to the soft-sand model. Phi is the total 
porosity, ���� is the effective pressure, and ��� is the Shale Volume, 
well logs. The equations are the underlying functions used in each 
calculus node. 

interested in minimizing the sum of squared errors coming 
from different variables (in the present paper, density, �� 
and �� ��⁄ ). The error of each variable is normalized by its 
corresponding standard deviation, and then the sum of the 
normalized errors through all the samples and all the 
variables is performed. Equations (1) and (2) illustrate the 
above multiple response least-squares formulation, where 
the index � runs through all the samples in the dataset. 

� �������� ���� � � � �∅� , ���� , �����|��, ��, … , �!" # $%�%�%&' (1) 

()�* � 12-��./�� 0 ��)1�|�*2�� # 12-��.3��� 0 ��)1�|�*4��# 12-&�.5��� ���� 0 �&)1�|�*6��  

(2) 

Since these standard errors are not known a priori, they 
must be estimated in an iterative manner. At each iteration, 
the regression performs the following two steps: 

• Given estimated residual standard deviations for each 
dependent variable, use some non-linear optimization 
approach to optimize the model parameters. In this 
paper, it is used the least_squares function from 
Python Scipy package [14]. 

• Given estimated model parameters, the standard 
deviation for the errors are recalculated. 

In order to consider a more complex and realistic error 
structure, further development is required. For instance, to 
take into account the finite and yet different resolutions of 
different well-logs, depth-correlated errors must be 
modelled. In addition, since, both petrophysical, and elastic 
logs are prompt to measurement errors, error-in-variable 
models must be applied, as [15] exemplifies. 

C: Statistical analysis 

Usual statistical tools must be used to analyze the results 
of every rock physics calibration. Two types of analyses 
are reinforced herein: goodness-of-fit, and significance 
tests. Rawlings et al. [16] give a broad introduction to least-
squares problem and statistical tools. 

Goodness-of-fit statistics are the usual residual standard 
deviations. Using this analysis, the geoscientist can 
compare how different rock physics models perform on a 
given dataset. These statistics might be used, for example, 
to decide which parameters are excluded (by keeping them 
as internal constants) or included in the original model. 

ANOVA is a useful tool to compare how much the residuals 
decrease (or increase), with the new (or excluded) 
parameters. It uses an F-test on the residuals’ sum of 
squared errors to evaluate the statistical significance of 
their variation. 

It is suggested that model selection aims at the model 
which presents the smaller residuals, and also which does 
not have many parameters (Occam’s Razor). Some 
indices, like AIC (Akaike Information Criterion) help support 
the model selection procedure, but the best choice relies 
on the geoscientist experience, and particular problem, as 
will be exemplified. 

Significance tests are applied to distinguish between the 
parameters of the same rock physics recipe, calibrated to 
two different datasets, or between one rock physics model 
parameters and some hypothesized values. These 
analyses are performed by t and F tests, for single and 
multiple hypothesis testing, depending on the number of 
parameters being tested, as explained in Rawlings [16], 
and Paternoster [17]. These tests depend on an estimate 
of the parameters uncertainties, which will be dealt with in 
the next section. 

Beyond significance tests, which compare the expected 
values of the parameter estimates alone, the user may be 
interested, in practice, in how big the difference between 
the predictions of two models is. The effect size is the 
difference of the model predictions divided by the pooled 
residual standard deviations, and it is a measure of the 
strength in the difference of the models’ predictions relative 
to their accuracies.  

D: Prediction 

The most important use of a rock physics model is to 
predict elastic properties given a new geologic setup. 
Using rock physics prediction, the geoscientist can, for 
example, simulate seismic response for a reservoir with 
smaller porosity, or under greater effective stress (greater 
overburden), or even saturated with a different fluid.  

On the other hand, to yield a robust prediction, it is of 
utmost importance to estimate the prediction uncertainty, 
or confidence band. The confidence band is obtained 
either approximately by linearization of the model, as 
demonstrated in Rawlings [16] and Bates [13], or by 
Markov Chain Monte Carlo (MCMC), as discussed in [18], 
[19], [20], [21], and [22]. Grana [23] applies the concept to 
rock physics models, taking into account the input 
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uncertainties, while the present paper focuses on the 
parameter uncertainties. 

The MCMC method takes the nonlinearities into account 
and is more advisable if the rock physics model is highly 
non-linear with respect to the parameters, or if the optimum 
parameters are too close to their bounds. In the non-linear 
regression problem, the conditional probabilities are given 
by Equations (3) to (5).  78�9:);� , 1�*<�=�> , -�, -�, -&?∝ A17:0()�*<B(C�D8�E���, �E�
�?�

E=�  
(3) 

78-�, -�, -&9:);� , 1�*<�=�> , �?
�BℐG �-!HI # 1, 12 JJK!"&

!=�  
(4) 

78;91, :);� , 1�*<�=�> , �, -�, -�, -&?� L);|�)1�|�*; -�* (5) 

Thus, the sampling method uses a Gibbs strategy, where 
each iteration consists of three steps (analogous to the 
strategy used by Sinay [21]): 

• Sampling the parameter values. Since Equation (3) is 
non-linear in the parameters, we use an approximate 
transition proposal given by a Gaussian centered on 
the previous sampled vector of parameters, and with 
covariance equal to a scaled version of the linearized 
parameter covariance. This sampling step follows the 
Metropolis-Hastings criteria for acceptance, as 
explained in Gilks et a. [18]. 

• Sampling of the residuals standard deviations, given 
the inverse gamma distribution in Equation (4). Where I # 1 is the shape parameter, and 

�� JJK! is the scale 

parameter. 

• Sampling the predicted elastic properties, given the 
Gaussian in Equation (3). 

Results and Discussion 

To apply aforementioned concepts, a dataset was 
downloaded from [24]. From this dataset we used digital 
logs plus static pressure from an unknown well. 

Shale volume, and total porosity logs were interpreted from 
GR, and NPHI, respectively.  

The fluid densities were estimated from the static 
measurements, and the fluid bulk moduli were estimated 
from both the static pressures and the temperature 
measurements, by using Batzle and Wang’s formulas [25]. 

The rock physics model was based on the Thomas-Steiber 
model for dispersed clay sand-shale mixture, described in 
Marion [26] and Mavko et. al. [12]. This model considers 
that some clay fills the pore space of the sandstone (shaly 
sand regime); and, as the clay volume increases beyond 
the critical porosity, the rock becomes matrix supported 
(sandy shale regime). 

For the density prediction, simple weighted mean of the 
component materials was used. For the elastic properties, 

the calculation workflow depends upon the shale volume. 
If the shale volume is smaller than 40%, then the shaly 
sand workflow is considered, otherwise sandy shale is 
used. 

Both workflows depend on the wet shale estimates for bulk 
and shear moduli. They are obtained using self-consistent 
model, explained in Wu [27], and Mavko et. al. [12]. 

The sandy shale bulk and shear moduli were calculated 
using Hashin-Shtrikman [12] lower bound average 
between sand grain properties and wet shale properties as 
in [4]. 

The shaly sand bulk and shear modulus were calculated 
using soft-sand model [4] (given in Figure 1): modified 
Hertz-Mindlin to find the properties of clean sand at the 
critical porosity, followed by modified Hashin-Shtrikman 
lower bound interpolation to find the clean sand properties 
at the formation porosity, and Gassmann fluid inclusion, for 
the clean sand saturated with the formation fluid.  

Finally, to calculate the shaly sand properties, a Hashin-
Shtrikman lower bound average is used to interpolate 
between the saturated clean sandstone and the critical 
mixture properties. Where the critical mixture, is a 
sandstone, with all its pore volume filled with clay, and its 
properties are calculated with a Hashin-Shtrikman lower 
bound between clean sandstone and wet shale properties. 

The model was calibrated for the interval covering two 
reservoirs. The parameters of the model are listed below, 
in Table 1. The black parameters are fixed, and the red 
bold ones were optimized. As an exercise, we start by 
adjusting seven parameters for both reservoirs, and in the 
next paragraphs, we will compare the calibrations to each 
reservoir, and then study the effect of reducing the number 
of free parameters.  

Figure 2 shows the fit using the optimized parameters, and 
the confidence bands at 80% confidence level.  

Table 1: Parameters of the rock physics model. Those subject to 
optimization are in red. The last columns are the confidence 
bands, at 80% level, for the parameters, which were calculated 
using MCMC technique. 

Parameters Values P10 P90 

f 1.0 0.98 1.00 

Sand Critical Porosity (%) 64 61.9 66.8 

Clay Density (g/cm3) 2.58 2.57 2.59 

Clay Bulk Modulus (GPa) 23.4 22.9 24.3 

Clay Shear Modulus (GPa) 9.9 9.7 10.0 

Sand Grain Bulk Modulus (GPa) 38.8 35.6 40.4 

Sand Grain Shear Modulus (GPa) 26.5 25.9 28.0 

Quartz Density (g/cm3) 2.75 - - 

Coordination Number 6 - - 

Pure wet Shale Porosity (%) 20 - - 

Shale pore aspect ratio 0.05 - - 

Water Bulk Modulus (GPa) 2.8 - - 

Water Density (g/cm3) 1 - - 

Oil Bulk Modulus (GPa) 0.7 - - 

Oil Density (g/cm3) 0.7 - - 

Gas Bulk Modulus (GPa) 0.3 - - 

Gas Density (g/cm3) 0.35 - - 
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Figure 2: Well logs from the case study. From left to right: rock types 
(green is shale, brown is intermediate ��� facies, and yellow is 
sandstone). Then the Gamma Ray curve, the Neutron Porosity, 
Density, ��, and ��. The red curves are the predicted elastic curves, 
and the red region is the 80% confidence band. 

As a first exercise, two new calibrations were performed 
using two different datasets. One is the top oil reservoir 
(around 12250 ft depth), while the other is the lower oil 
reservoir (around 12400 ft depth), both illustrated in Figure 
2. The aim is to compare both reservoirs’ microstructures, 
which are represented by their model parameters. Avseth 
et al. [1] apply the same reasoning, point wisely, by jointly 
inverting the �� and porosity logs to cementation, and 
sorting, which they use in their rock physics model. In this 
paper, we treat the parameters as constant values 
representative of the entire dataset, thus we can use them 
to compare two different datasets. 

Based on the statistical tests, the two reservoirs have 
different microstructures. For example, their calibrated clay 
densities are 2.61 g/cm3 (0.01 g/cm3 standard deviation 
with 394 degrees of freedom) and 2.56 g/cm3 (0.01 g/cm3 

standard deviation with 334 degrees of freedom) 
respectively, and the null hypothesis of equality between 
these two parameters must be rejected, according to the t-
test. The global null hypothesis that all the parameters are 
equal is rejected, according to the F-test. Table 2 
summarizes the comparison. 

Table 2: Comparison of the two reservoirs. The last column gives 
the significance t-tests at a 95% confidence level for each model 
parameter. The bottom row, shows the result of the F-test for the 
whole set of parameters. 

Parameters R1 R2 t-tests 

f 1 1 - 

Sand Critical Porosity (%) 64.5 62.7 - 

Clay Density (g/cm3) 2.61 2.56 Reject 

Clay Bulk Modulus (GPa) 26.3 20.8 Reject 

Clay Shear Modulus (GPa) 10.6 9.7 Reject 

Sand Grain Bulk Modulus (GPa) 31.7 50.0 Reject 

Sand Grain Shear Modulus (GPa) 26.0 24.9 - 

F-test: Reject 

 
Figure 3: Comparison between the predictions of the rock physics 
models calibrated for the two reservoirs (Model1 refers to the 
upper reservoir and Model 2 to the lower reservoir). The effect 
sizes is insignificant in the reservoir interval. 

On the other hand, the effect size is much smaller than a 
unit at the reservoirs, for all the predicted variables, as 
illustrated in Figure 3 for	��. Thus, it can be concluded that 
the differences in the upper and lower reservoirs’ 
parameters yield insignificant impact on their elastic 
behavior. From a practical point of view, both calibrations 
could be used for both reservoirs. 

Another exercise is to select between models. It is 
compared the difference between using the 
aforementioned dispersed clay model, and a laminar shale 
model, which considers that the rock is composed of a 
interbedding  of clean sand and shale layers (as used by 
Avseth et al. [1]. 

Figure 4 shows the effect size of the difference between 
the dispersed and laminar models, for ��. The effect sizes 
are significant in the entire well interval, and additionally, it 
yields an improved fit for the lower reservoir. The residuals 
of the second model have less outliers, as it describes 
better the intermediate facies’ elastic behavior. This 
analysis gives evidence to use the laminar model over the 
original dispersed clay model.  

The present workflow is intended to help the geophysicist 
understand the underlying rock physics behavior of the 
rock. It does not, however, substitute more direct analysis. 
Thus, further laboratory rock analysis is reinforced to help 
increase confidence in the model choice, and its parameter 
values.  

As a third exercise, the confidence bands, calculated by 
the MCMC method, are compared with the confidence 
bands estimated by linear approximation. Figure 5 shows 
the marginal 95% confidence ellipse for the parameters 
clay bulk and shear moduli. The Rock Physics model 
considered is the dispersed clay model, calibrated for the 
whole interval in Figure 2. 
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Figure 4: Comparison between the predictions of two rock physics 
models calibrated for the same dataset (Model1 is the dispersed 
clay model, and 2 is the laminar shale model). The effects sizes 
are significant throughout the complete well interval, and Model 2 
yield an improved fit in the lower reservoir. 

The black ellipse is the confidence calculated by linear 
approximation. The red points in Figure 5 are the 
parameter values sampled with MCMC technique, and the 
green ellipse is calculated from fitting a Gaussian to the 
sampled points. The black dot is the optimum parameter 
vector. In this example, both ellipses are similar, showing 
that rock physics model is approximately linear in these 
parameters. 

 
Figure 5: Comparison of the MCMC (green) and the linear 
approximation (black) 95% marginal confidence region for clay bulk 
and shear moduli. The red dots are 50000 samples drawn from the
MCMC. The black dot is the optimum parameter vector. It can be
seen that both methods yield similar confidence regions. 

Conclusions 

This paper showed how to quantitatively calibrate and 
analyze rock physics models. Using appropriate statistical 
tools and data structure the authors believe that it is 
possible to extract more reliable information from the rock 
measurements, than based on simple crossplot analysis or 
linear empirical relations.  

Using the proposed data structure the user can easily 
implement famous rock physics recipes, or change them to 
create custom made models. 

The paper demonstrated how to use nonlinear least-
squares to simultaneously calibrate all the elastic 
properties. 

The proposed framework enables the user to model 
simultaneously rock physics parameter and prediction 
uncertainties, through MCMC. 

The framework makes it possible to compare the 
microstructure of two different reservoirs, by calibrating the 
same rock physics model to both reservoirs and comparing 
their parameters, and predictions. It is also showed how to 
use statistical tools to compare the performance of different 
rock physics models for the same reservoir.  

Effect size is a statistical tool, which was demonstrated to 
yield more interpretable results than usual significance t 
and F tests. 

The rock physics calibration described in this paper can be 
used to support quantitative seismic interpretation, as 
shown in [5-10]. 
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