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Abstract 
Lithofacies determination from well logs is of great 
importance for carbonate reservoir characterization.  
Costly coring processes induces normally a lack of 
geological data over the reservoir. For this, geophysical 
logs analysis is central for the development of reservoir 
models capable to distinguish different geological facies. 
The Artificial Neural Network (ANN) are considered as a 
suitable tool for the identification of facies and an efficient 
method for quantitative analysis.  The aim of this study is 
analyze and compare the Artificial Neural Network with 
the Back-Propagation approach (ANN-BP) to support the 
lithofacies classification from two carbonates well data 
sets, located in the Campos Basin (in the continental 
margin of Brazil) and at the Ses Sitjoles experimental site 
(in the south-east part of the Mallorca Island, Spain), near 
the city of Campos, Baleares. The accuracy of training 
and blind tests suggests that ANN-BP application for two 
different carbonate reservoirs offers an auxiliary tool for 
lithofacies classification based exclusively on well data.  

Introduction 

An Artificial Neural Network (ANN) is a mathematical tool 
inspired from human brain functions, and designed to 
perform complex pattern recognition tasks (Parra and 
Ursula, 2014) and they have been applied as a classifier 
to quantify patterns and estimate different parameters in 
geophysical data (Mohaghegh et al., 1994; Gonçalves, 
1995; Benaouda, 1999; Nikravesh and Aminzadeh, 2001, 
2003; Bhatt and Helle, 2002; Haykin and Lippmann, 
1994). A good reason to use an ANN in petroleum 
engineering is due to the strength of this technique which 
is capable to learn and self-adjust after training. It 
provides thus a powerful tool for solving pattern 
recognition problems through the processing units nested 
in the hidden layers (Mohaghegh et al, 1994).  

The adaptability of the ANN is crucial. This feature allows 
the ANN to respond as humans brains, learning by 
experience. Neural networks need a reasonable amount 
of information to learn and adjust the links and 
connections between different neurons by training, 
storage, recognition and estimate sampled function when 
the output of the functions is unknown. Rumelhart at al. 
(1986) developed the back-propagation algorithm which is 
the most used in neural networks training.  

In this context, the objectives of this work were to 
demonstrate the ability of ANN-BP to learn and replicate 
different classifications of lithofacies.  The study is based 
on two carbonate reservoirs, considering that carbonates 
may have heterogeneities that can be difficult to describe, 
and consequently difficult to encompass.  

The first reservoir studied is part of the Llucmajor 
carbonate platform, in the SE part of the Mallorca Island 
(Spain). It is composed of complex prograding limestones 
affected by a freshwater reservoir overlying a sea water 
intrusion (Hebert, 2011). The Ses Sitjoles site is located 
near the local city of Campos, 6 km inland from the 
mediterranean coastline (Figure 1). It belongs to the 
inland part of the Llucmajor reef-rimmed platform set up 
during Miocene age. According to Pomar (2001b), the 
complexities on the platform facies architecture were the 
result of changes in carbonate production and 
accommodation related to high-frequency sea-level 
fluctuations. The lithology of the Ses Sitjoles site is 
characterized by upwards reefs to lagoonal depositional 
environments (Hebert, 2011). 

 

Figure 1 – Geological and structural mal of the Island of 
Mallorca, Baleares, Spain (modified from Hebert, 2011); a 
red dot locates the experimental site near Campos. 

The second reservoir studied here is made of carbonate 
rocks from Macaé Group (Albian) in Brazil. Named 
“Campo A” for confidentiality reasons, the site is located 
in the Campos Basin on the northern coast of the Rio de 
Janeiro state, Brazil (Figure 2). The tectono-sedimentary 
evolution of this basin occurred in three different phases: 
rift, post-rift and drift, which gave origin, respectively, to 
continental, transactional and marine super sequences.  
The reservoir studied belongs to the Quissamã formation, 
which took place as part of a carbonaceous platform, with 
homoclinal ramp morphology (Guardado et al., 1989).  
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Figure 2 – Campos Basin to the north of the Rio de 
Janeiro coast, Brazil, where ”Campo A” is located.  

 

This study aims to demonstrate that lithofacies 
classification by application of the ANN-BP method using 
wireline logs is a valid tool to describe the inner geological 
structure of carbonate reservoirs.  

For the Mallorca site (Spain), the facies texture is 
described by Hebert (2011). For the Campos Basin data 
(Brazil) and the facies texture description was provided by 
PETROBRAS S/A. The output classification from ANN-BP 
is based on a combination of logs to reproduce lithofacies 
description using the Multilayer Perceptron approach. The 
main purpose of the ANN-BP structure presented aims to 
analyze the accuracy of the methods at the two sites. 

 

Methods 

In order to obtain the results presented in this paper, two 
different approaches were used. The first application of 
Artificial Neural Network is to estimate the texture facies 
(target) using all logs (inputs) available for each reservoir. 
The second application seeks to evaluate the ability of 
ANN-BP to match the facies texture for the same logs 
either present at the Mallorca or the Campos A sites. The 
data set used in the input layer to train the ANN-BP is 
composed by downhole geophysical measurements such 
as travel time (DT), gamma ray (GR), neutron porosity 
(PHIN), effective porosity (PHIE), deep resistivity (Rt), 
shallow resistivity (Rxo), water saturation (Sw) and bulk 
density (RHOB) from Campos A. For the Llucmajor 
reservoir, the gamma ray (GR), uranium concentration 
(U), compressional wave velocity (Vp), formation Factor 
(F), reflectance of rock (R), bulk density (ρr) and 
impedance (Z) were used. These downhole geophysical 
measurements feed the ANN-BP input layer (Figure 3) to 
obtain facies texture (output). 

The Waikato Environment for Knowledge Analysis 
(WEKA) (Hall et al., 2009) is a software from the WEKA 
Machine Learning project of Waikato University 
(Hamilton, New Zealand) that offers different tasks to 
work with data mining, as pre-processing of the data. The 
data set was converted to the standard file, called 
Attribute Relation File Format (ARFF), normalized and 
analyzed using the Artificial Neural Network type 
Multilayer Perceptron.  

A Summary of downhole geophysical data from borehole 
MC10 series of the Llucmajor sequence, between 43 and 

95 m is presented (Figure 4). The experimental site is set 
in a karstic carbonate context and located 6 km off the 
coastline, to the south of Campos city. It penetrates the 
Miocene Llucmajor reefal carbonate platform. Hole MC10 
penetrates the carbonated shelf down to 100 m depth into 
the inner platform, reefal and slope units. The three 
hydrological systems are found from top to bottom with 
fresh water on top, mix water and salt water at the base. 
The upper sequence, assigned to the Messinian, consists 
of a variety of lithologies controlled by the response of the 
system to changing sea level (Pomar, 1991). The set of 
100 m-deep boreholes reveals a simplified facies 
succession of bioturbated fine grained packstones and 
algal grainstones to rudstones (81 - 95 m; Figure 4), 
skeletal packstones – grainstones (59 - 81 m), coral-rich 
zone (boundstones, coral floatstones, rudstones), 
grainstones and skeletal rudstones (43 - 59 m). Globally, 
the grain size is medium to coarse. Mudstones (Figure 4, 
in blue) and wakstones (Figure 4 in pink) are deposited in 
low energy environments and typically higher gamma-ray 
activity (Lucia, 2007). 

 

 

Figure 3 – Architecture of ANN. Example with 6 neurons 
in the input layer, 4 neurons in the hidden layer and 1 
neuron (output) in the output layer. 

 

 

Figure 4 Summary of downhole geophysical data from 
borehole MC10 series of the Llucmajor sequence, 
between 45 and 95 m. Description of columns: (1) Depth 
(m), (2) Pore fluid (fresh water, mix water and sea water), 
(3) Facies texture deduced from core description and 
thins section analysis according to Dunham’s carbonate 
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classification (Dunham, 1962) with total gamma ray 
profile, (5) Gamma Ray (cps) and uranium (ppm) profiles 
displaying the natural radioactivity trend, (6) Ultrasonic P-
wave velocity Vp (m/s) and Impedance (g*m/s*cc) 
extracted from Acoustic Borehole Wall Image (ABI) log, 
(7) Reflectance (%) computed from Luthi (2001) and (8) 
Formation Factor (F) computed from downhole 
geophysical pore fluid and formation electrical 
conductivities. Graphical display of lithofacies by depth for 
the six facies texture (blue = mudstone, pink = wackstone, 
yellow = packstone, green = grainstone, red = 
boundstone, dark blue = rudstone). 

 

Figure 5 – Graphical summary of downhole geophysical 
measurements from borehole X10 in the Campos Basin, 
Brazil, between 730 and 910 m. Descriptions of columns: 
(1) Depth (m), (2) Cap rock and reservoir localization, (3) 
Facies texture as determined by PETROBRAS from core 
description and thin sections analyses according to 
Dunham carbonate classification (Dunham, 1962) with 
Gamma Ray (API) overlaid and displaying the natural 

radioactivity trend, (4) Sonic log (DT) in μ*sec/feet, (5) 

Neutron porosity (PHIN) and bulk density (RHOC) logs 
showing the presence of oil and gas, (6) Electrical 
resistivity at depth in the formation (Rt) and in the invaded 
zone (Rxo), and (7) Effective porosity (PHIE) and Water 
Saturation (Sw). Graphical display of lithofacies by depth 
for the 5 facies texture (blue = grainstone, pink = 
cemented grainstone, yellow = packstone, green = 
cemented packstone, red = wackstone). 

Downhole geophysical data from borehole X10 series of 
the Campo A sequence, between 730 m and 910 m used 
to train and test the ANN-BP are also presented (Figure 
5).  Due to confidentiality issues, the depths and names of 
the wells are not directly reported. The lithofacies from 
borehole X10 are controlled by the response of the 
system to changing sea level. As a consequence, the 
rock texture changes due to depositional energy. For high 
sea level stands, mudstones and wackstones with 
carbonatic mud associated are found. The shallow and 
deep resistivity logs associated with density and neutron 
are suffisant to identify the reservoir (close to 750 m; Fig 
5). The oil/water contact is identified at 820 m depth. This 
site is drilled into shallow water carbonates from the 
Quissamã formation. 

Results 

The Artificial Neural Network with the Back Propagation 
approach (ANN-BP) was used to support the lithofacies 
classification for two data sets from carbonate reservoirs. 
The study was performed in two steps: data set training 
first, then blind test. The training phase provides an 
accuracy estimate for the ANN-BP. The blind test is 
aimed at demonstrating the ANN-BP capacity to identify 
lithofacies classification using different combinations of 
data sets. The first data set refers to all well data 
available while the second one is restricted to the same 
type of well data at both sites in petrophysical terms.  

For both sites, the highest lithofacies determination 
accuracy is obtained using all well data (Table 1). The 
high success rate of 99,6% and 98,2%, for all logs and 
three logs respectively,  accuracy for Campos Basin was 
expected due to familiarity of the ANN-BP with the data 
set during the training phase. For Mallorca data set the 
accuracy (79,8% and 69,1%) decreases (Table 1).  

Subsequently, the blind test was performed using the two 
testing data set. The first one contains all downhole 
geophysical measurements for each site, and the second 
data set used is smaller, containing only three logs. This 
procedure was adopted to compare the training phase 
using the same logs available at both sites where different 
downhole geophysical measurements were recorded. The 
ANN-BP blind tests show, in both cases, that the blind 
test accuracy increases when the full data set is used. 

Table 1 – ANN-BP results from training and blind tests for 
the Mallorca (MC10 and MC2) and Campo A (X10 and 
X3) boreholes.  

 

 Training  Blind test 

 All logs 3 logs  All logs  3 logs 

X10 99,6% 98,2% X3 85,7% 54,9% 

MC10 79,8% 69,1% MC2 60,5% 44,4% 

 

Figure 6 presents the ANN-BP accuracy for the training 
and blind test results for two groups of data sets from 
Mallorca. “Training 1” corresponds to gamma ray (GR), 
uranium concentration (U), compressional wave velocity 
(Vp), formation Factor (F), reflectance (R), bulk density 
(ρr) and impedance (Z) data. “Training 2” was performed 
using gamma ray (GR), compressional wave velocity 
(Vp), and bulk density (ρr). The blind test 1 (Figure 6, 
column 5) and blind test 2 (Figure 6, column 6) 
correspond to training 1 (Figure 6, column 3) and training 
2 (Figure 6, column 4), respectively. Due to proximity of 
the training and blind test boreholes (2 m away from each 
other), the lithofacies core description was performed in 
MC10 and extended to MC2, as described by Hebert 
(2011). The general results provide the expected good 
agreement between lithofacies description based on 
Dunham (1962) classification. The analysis performed 
with the back propagation algorithm applied to both data 
sets (training 1 and 2) compare well with the lithofacies 
description. At the same time, the lithofacies recognition 
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accuracy varies for the individual classes and appears as 
best adapted to packstones (in yellow). As the ANN-BP 
routine for carbonates was trained (and memorized) on 
the basis of a large number of packstone samples, which 
generates  an “overfitting” problem in the context of this 
study. In this data set, the packstones represent 54,1% of 
all samples used in the training phase, which is also 
justified by input data set limitations due to low sample 
frequency of mudstones and wackstones. During the blind 
test process, the model was expected to behave in the 
same way. Grainstones were associated with the highest 
error because the lithofacies classification refers mostly to 
the packstones. For blind test 1 (column 5) the model is 
more generalist for packstones than in the blind test 2 
(column 6). For the wackstones (in 49 m and 59 m) the 
ANN-BP predictions are in good agreement with the 
lithofacies description in both data set studied (Figure 6).  

The ANN-BP model for the Campo A site shows the 
lithofacies description from X10 and X3 (column 2 and 5, 
respectively), training 1 and 2 (column 3 and 4, 
respectively) and blind tests (column 6 and 7, 
respectively; Figure 7). During the training tests, the 
sucess accuracy of ANN-BP is higher than 98% in both 
data set used in borehole X10. Cemented grainstones 
generate significant errors as they refer to cemented 
grainstones (in 775 m, 1805 m, 1845 m and 1873 m; 
Figure 7). The same situation occurred between 
wackstones (red) and packstones (yellow) in 1760 m. For 
blind test 2 (Figure 7 column 7), some of the grainstones 
were classified as packstones (1802 m, 1820 m, 1838 m) 
or as cemented grainstones (1832 m, 1848 m).  

 

 

Figure 6 – Mallorca ANN-BP training and blind test for 
two different data sets, using all data set and using 3 logs. 
Columns: (1) Depth (m), (2) Facies texture from MC10, 
(3) ANN-BP training using all logs available, (4) ANNBP 
training using 3 logs, (5) Blind test from training with all 
logs, and (6) Blind test from training with 3 logs.  

Graphical display of lithofacies by depth for the six facies 
texture (blue = mudstone, pink = wackstone, yellow = 
packstone, green = grainstone, red = boundstone, dark 
blue = rudstone). 

 

 

Figure 7 – Campo A ANN-BP training and blind tests for 
two different data sets, either using all data set or using 3 
logs. Columns: (1) Depth (m), (2) Facies texture from 
X10, (3) ANN-BP training using all logs available, (4) 
ANN-BP training using 3 logs, (5) Facies texture from 
borehole X3, (6) Blind test from training with all logs, and 
(7) Blind test from training with 3 logs.  Graphical display 
of lithofacies by depth for the 5 facies texture (blue = 
grainstone, pink = cemented grainstone, yellow = 
packstone, green = cemented packstone, red = 
wackstone). 

Conclusions 

This study demonstrates an approach for lithofacies 
classification from two different carbonate sites based on 
downhole geophysical measurements. This methodology 
can support decisions and perform rock characterization 
due to the ability of ANN-BP to perform a lithofacies 
classification for a given well, simplifying the process of 
study and analysis required in. 

The ANN-BP method based on the WEKA routine, is 
proven to be useful tool to provide a lithofacies 
classification in different types of carbonate reservoirs. 
The results obtained using two different combination of 
data set are shown to be efficient in predicting lithofacies. 
The ANN-BP has some difficulties to distinguish 
lithofacies that were more trained than others, due the 
“overfitting” problem from neural networks that memorizes 
the training. For data sets with similar attributes, the ANN-
BP can “memorize” the training phase and generalize to 
new situations. Some contradictions pointed out by the 
ANN-BP can indicate the necessity of additional input 
data. 

The results show that the ANN-B based on the WEKA 
routine can help decisions in lithofacies classification in 
petroleum reservoir engineering using downhole 
geophysical measurements. 
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