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Abstract

The Namorado Oil Field, located off-shore Campos
Basin, near the state of Rio de Janeiro, represents
the beginning of oil exploration in Brazil in the
70’s and is still target of re-exploratory researches.
Because of turbidite sandstones significance in this
Field and the huge general representativity of such
reservoirs in Brazil’s oil productivity, this study is
aimed at petrophysical characterization of “Namorado
Sandstone” with emphasis on permeability estimation
from multiple linear regression. The Namorado
Sandstone is the producer researvoir in the Namorado
Field and consists of turbidite sand deposits,
sedimented during the Albian - Cenomanian. The
modeling, graphical generation and statistical analysis
were performed with use of programming language
matlab, version R2014a . Throughout this research,
well log data from one vertical well were used, along
with porosity and permeability data measured in
laboratory from core samples extracted in this well.
The well name is NA04, and was chosen because
it has more core data overall. This approach was
made because usually many wells are not cored, while
others are not continuously cored for this process
demand high costs and be quite slow. The greater
effort on permeability estimation is justified because
of its extreme importance on reservoirs quality and
management analysis, along with its high complexity
level from the point of view of obtaining it from
empirical and/or semi-empirical equations. Such
complexity is due to the fact that permeability is
controlled by many parameters, both the microscopic
and macroscopic level, and may even vary drastically
in a matter of centimeters of rock.

Introduction

The knowledge of petrophysical characteristics within
reservoir rocks is useful to set a suitable geophysical and
geological interpretation, providing thus better prospects
for reservoir operation forecast. Among the parameters
that govern these properties, there are porosity, fluid
saturation, shale content and permeability, which is the
most difficult to be estimated given its high complexity and
dependence on many parameters. Such measures, along
with Net-pay are the most important from a commercial

point of view and will be discussed in this paper using
a simple and objective approach, for one well, located in
Namorado Oil Field.

Permeability and porosity from core samples are the
most close-to-reality way of obtain these rock properties.
Though, according to Crain (2000), many wells are barely
continuously cored, and even when they are, permeability
measured in core samples may lead to questionable
values, since in heterogeneous rocks, permeability can
vary from 0 to 50 Darcies in a matter of centimeters.

A great amount of work was done by several investigators,
such as Tixier (1949), Timur et al. (1968), Coates et
al. (1973) and many others, in the attempt to grasp
the complexity of permeability function into a model with
general applicability. All these studies give a better
understanding of the factors controlling permeability, but
they also show that it is an illusion to look for an “universal”
relation between permeability and other variables (Balan et
al. 1995).

The regression approach, using statistical instead of
“stiff” deterministic formalism, tries to predict a conditional
average, or expectation of permeability, corresponding to a
given set of parameters (wendt et al., 1986) and (Dubrule
e Haldorsen, 1986). From this point of view this study will
lean on obtaining some parameters from log data such as
effective porosity (φe), shaleness (Vsh), water saturation (Sw)
and Net-pay with an effort on predicting permeability also
from well log data and from well-log-derived parameters,
with use of multiple linear regression.

Method

This research was carried out in several steps, the first
one being the lithological discrimination from curves ρb
and GR using lithology data obtained from core samples,
so that we could build a lithology column for the whole
well. After that, cross-plots between log data were made
to help in parameters selection such as ρm , GRmax,
GRmin, φNsh, φDsh and Rsh, which will be explained later on.
Then an anisotropy analysis of permeability was performed
analyzing the Kh × Kv cross-plot, and φh × φv, using
Ordinary Least Square Regression (OLSR) and Robust
Regression (RR); porosity × permeability relationships
taken from core data and calculation of effective porosity
(φe), water saturation (Sw), shale volume (Vsh) and Net-pay
from the logs. Then, multiple linear regression analysis
were performed with the logs as dependent variables and
permeability as response variable which was denoted as
Klogs. After that, a stepwise regression was carried out
to eliminate the non-significant logs from Klogs regression,
which was denoted as KSWR. Finally a regression using the
previously estimated parameters (φe and Vsh) as regression
variables, and the response variable was denoted Kz. The
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results were plotted as “permeability logs”, continuously
with depth. All statistical analyses were performed in
software matlab in the light of the t and F hypothesis
tests as well as Coefficient of Determination (R2), Adjusted
Coefficient of Determination (R2

a) and Pearson’s Correlation
Coefficient (R).

General expression of multiple linear regression with p−1
regression variables:

Yi = α0 +α1Xi1 +α2Xi2 + ...+αp−1Xi,p−1 +εi, i ∈ N∗ , (1)

where α0, α1, α2...αp−1 are the regression coefficients
(α0 is also called intercept); the function Yi represents
a response surface, describing an hyperplane in the p-
dimensional space of input variables Xi.

To minimize outliers influence (which are values that “lies
outside” or are much smaller or larger than most of the
other values in a set of data), linear robust regression can
be performed.

Robust regression works by assigning a weight to each
data point. Weighting is done automatically and iteratively
using a process called iteratively reweighted least squares.
In the first iteration, each point is assigned equal weight
and model coefficients are estimated using ordinary least
squares. At subsequent iterations, weights are recomputed
so that points farther from model predictions in the previous
iteration are given lower weight. Model coefficients are then
recomputed using weighted least squares. The process
continues until the values of the coefficient estimates
converge within a specified tolerance.

The F-test of the overall significance used here is a specific
form of the F-test. It compares a model with no predictors
to the model that you specify. A regression model that
contains no predictors is also known as an intercept-only
model. If the P-value for the F-test of overall significance
test is less than the significance level (the value used here
is 0.05) you can reject the null-hypothesis and conclude
that your model provides a better fit than the intercept-only
model.

In linear regression The t-test works the same way as
the F-test, with the difference that it can assess only one
regression coefficient at a time. The hypothesis test on
coefficient i tests the null hypothesis that it is equal to
zero - meaning the corresponding term is not significant
- versus the alternate hypothesis that the coefficient is
different from zero. If the P-value for the t-test is lower
than 0.05 (significant level used here) for variable, say, i,
than one can reject the null hypothesis and this variable is
significant on the model, otherwise it is not.

The steps to calculate the petrophysical parameters were
mostly taken from Nery (2013).

Getting started with the linear gamma ray index (IGR):

IGR =
GRlog−GRmin

GRmax−GRmin
, (2)

where GRlog, GRmin and GRmax are respectively, the gamma
ray reading at the depth of interest, the minimum gamma
ray reading (usually the mean minimum through a clean

sandstone or carbonate formation) and the maximum
gamma ray reading (usually the mean maximum through
a shale or clay formation).

The Vsh based on the IGR is then calculated as follows:

Clavier equation:

VshCla = 1,7−
√

3,38− (IGR +0,7)2 (3)

Larionov equation for older rocks (Cretaceous Period):

VshLar = 0,33 · (22·IGR −1) (4)

As the Namorado Formation is composed by arcosean
sandstones the Vsh estimation from conventional Gamma
ray logs is overestimated. In order to overcome this
problem, another shale volume indicator was used, taken
from curves ρb and φN :

VshND =
φN −φD

φNsh−φDsh
, (5)

where φN is the neutron porosity corrected to the matrix of
reservoir rock, φD is the porosity estimated from ρb curve,
φNsh and φDsh the shale apparent porosity, from both φN and
ρb curves.

After calculating the Vsh’s above it was chosen the smallest
value among the three, at each depth of interest, like this:

If VshND < 0 we used the smallest between equations (3)
and (4), otherwise we used the smallest among (3), (4)
and (5), which was then labeled as Vshminor . Besides Vshminor ,
an average Vsh was performed from equations (3) and (4),
which was labeled as Vshmed .

Steps for φe calculation:

φD =
ρm−ρb

ρm−ρ f
, (6)

where, ρb, ρm and ρ f are respectively, the bulk density
reading at the depth on interest, the bulk density of matrix
mineral and the bulk density of fluid.

Then, a correction was performed to remove the shale
influence on both, φD and φN :

φDc = φD−φDsh ·Vshminor (7)

φNc = φN −φNsh ·Vshminor (8)

And finally, if φNc < φDc, Gaymard-Poupon equation is
used to calculate φe:

φe =

√
(φNc)2 +(φDc)2

2
(9)

else, we use the equation below:

φe =
φD ·φNsh−φN ·φDsh

φNsh−φDsh
(10)
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For the Water saturation determination we used a
modified expression of Simandoux equation (1963), firstly
introduced this way by Bardon and Pied (1969):

(
φ m

e
a ·Rw

)
·S2

w +

(
Vshminor

Rsh

)
·Sw−

1
Rt

= 0 (11)

which would return for the positive root:

Sw =
a ·Rw

2 ·φ m
e
·

√(Vshminor

Rsh

)2
+

4 ·φ m
e

a ·Rw ·Rt
−

Vshminor

Rsh

 (12)

where Rw is the formation water resistivity, Rsh the resistivity
of the shale, Rt being the true resistivity of the rock
saturated with brine and hydrocarbon, a the tortuosity index
and m the cementation factor.

Results

Figure 1: Vertical vs horizontal porosity shows the scalar
nature of porosity.

Table 1: Results for regressions in figure 1.

OLSR φh = 1.074 ·φv−1.86; R2 = 0.90
RR φh = 1.006 ·φv−0.21; R2 = 0.94

Based on a judicious analysis with the help of cross-plots
between the log data, it was found the parameters as
follows for the well-log-based calculation of petrophysical
properties: ρm = 2,68 g/cm3; GRmin = 45 API and GRmax =
104 API; Rsh = 2 Ω.m, φNsh = 0,26 and φDsh = 0,10, m = 2,
a = 1 and Rw = 0.025 Ω.m. The results are shown in table 4
and in figure 4.

In figure 3 φv was used instead of φh because it had
more data available, although using φh would lead to the
same result as porosity doe not depend on the measuring
direction (figure 1).

Figure 2: Vertical vs horizontal permeability shows the
tensorial nature of permeability.

Table 2: Results for regressions in figure 2.

OLSR Kh = 0.84 ·Kv +150; R2 = 0.68
RR Kh = 0.87 ·Kv +78.3; R2 = 0.80

Figure 3: poro-perm graphics showing that porosity and
permeability have a non-linear relationship with strong
exponential and power correlation.

Table 3: Results for regressions in figure 3.

Exponential K = 0.076 · e0.3224·φ ; R2 = 0.84
Power Law K = 0.0001 ·φ 4.632 ; R2 = 0.876

Although the core data shows 10 different facies for this
well, they were grouped into 4 great domains, and the
following logic was used to create the lithology column:
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45≤ GR≤ 70 and ρb ≤ 2.35 =⇒ sandstone;
45 ≤ GR ≤ 60 and 2.40 ≤ ρb ≤ 2.60 =⇒ clayey silt, marl,
and/or shale;
GR≥ 70 =⇒ shale;
GR≤ 45 and ρb ≥ 2.50 =⇒ limestone.

Of course this is not a cluster analysis technique, but
rather, a simple way of representing the main lithologies
continuously with depth, since the cored interval represents
only a fraction of the wellbore.

Table 4: Netpay with the average values of effective
porosity, shaleness and water saturation in the net-pay
zone.

Vsh (fraction) Sw (fraction) φe (fraction) Netpay (m)
0,09 0,22 0,228 69,6

Figure 4: Petrophysical parameters plotted continuously
with depth, being the net-pay cutoffs: Vshminor < 0.30; Sw <
0.55 and φe > 0.10.

Figure 5: The main diagonal shows the variables
histogram, while the other matrix entries shows the
Pearson’s Correlation Coefficient between the vertical and
respective horizontal variable.

Figure 6: Correlation Coefficient between Kh−core, φe,
Vshminor and Vshmed .

Table 5: Coefficients and statistical parameters obtained
for Kper f is regression.

Variable Coef. t0 p-value (t stat.)
intercept 7353.88 3.3231 0.0012484

∆t 1.35 0.15339 0.8784
GR -26.17 -3.5695 0.00055354
ILD -1.69 -0.75309 0.45318
ρb -2118.37 -3.1425 0.0022102
φN -2435.35 -1.2522 0.21345
R2 R2

a t p-value (F stat.)
0.173 0.132 ± 1.984 0.00181
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Table 6: Coefficients and statistical parameters obtained
for KSWR regression.

Variable Coef. t0 p-value (t stat.)
intercept 16335 3.5337 0.00061968

GR -240.42 -2.6753 0.0087107
ρb -5946.1 -3.1574 0.0020992

GR × ρb 88.419 2.3742 0.019478
R2 R2

a t p-value (F stat.)
0.203 0.18 ± 1.984 0.0000393

Table 7: Coefficients and statistical parameters obtained
for Kz regression.

Variable Coef. t0 p-value (t stat.)
intercept 569.76 5.6233 1.6438e-07

Vshmed -3853.1 -4.7042 8.0277e-06
φe 1802.1 3.5403 0.00060387
R2 R2

a t p-value (F stat.)
0.195 0.179 ± 1.9835 0.000016

Figure 7: Graphical result for the three multiple linear
regressions performed.

Conclusions

In this paper it is proposed a methodology for reservoir
characterization using well logs and core data. It’s clear
that porosity does not depend on the measuring direction
as shown in figure 1. On the other hand, permeability
shows a tensorial characteristic, exhibiting a greater
dispersion (figure 2), that is, varying with direction. The

Namorado Sandstone though, exhibits low permeability
anisotropy, as can be seen for both, the OLSR and RR
regressions. The RR regression suffers less influence
on outliers, thus converging to the origin point (0,0), as
expected.

It is also shown that permeability and porosity have a
direct relationship (figure 3), meaning that the greater
the porosity the greater the permeability, which makes
sense. Going beyond that, it is shown that it is a
rather exponential or a power law relationship. Tixier
(1949), Timur et al. (1968) and Coates et al. (1973)
obtained empirical equations relating permeability, porosity
and irreducible water saturation, where in all of them
permeability is a power-law function of porosity. The
exponential relationship obtained here is visually better
than the power law relation, although the R2 points out to
a better power law correlation between the variables (table
3).

Besides, permeability have little relationship with the
conventional well log data used in this paper. The ones
who show better correlation are curves ρb and GR as can
be seeing by both, the figure 5 and the table 5, exhibiting
greater R and the smallest p-values for t-statistic. It might
be because curve ρb is better related to the real porosity of
the formation in comparison to φN (highly influenced by the
pore-filled fluid) and GR be related to the shaleness, since
dispersed shale reduces the effective porosity of the rock
which also reduces permeability ( GR and Kh−core exhibit
inverse relationship seen also in figure 5).

In regression Kz, the well-log-derived parameters φe and
Vshmed Shows an expected pattern. Kz grows with φe
and decreases with Vshmed , as shown by the respective
coefficients in table 7. Although Vshminor was used to
calculate φe and Sw, Vshmed shows a way better correlation
to permeability (figure 6). Might be because Vshmed used
here depends only on GR curve, while Vshminor depends on
curves GR, ρb and φN .
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