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Abstract 
We represent an exact mathematical procedure for the 
analysis of the elastic wave propagation in plane layered 
porous media taking into account the effect of high 
temporal frequencies. For the characterization of the 
effect we use the dynamic permeability expression 
proposed by Jonhson, Koplik and Dashen in 1987. The 
algorithm is based on a formalism introduced by Ursin in 
1983.  

Introduction 
In 1956, Biot published two famous articles describing the 
propagation of elastic waves in porous media containing a 
fluid, see Biot (1956a, 1956b).  One of the important 
results of the poroelasticity theory is the identification of 
three waves: two compressional (fast and slow) and one 
shear, these are similar to the usual compressional and 
shear waves in an elastic medium, respectively. The slow 
compressional wave, also known as the slow wave of 
Biot, was experimentally confirmed by Plona (1980). 
For high frequencies Biot presented a particular 
expression for two types of pore geometry: two-
dimensional flow between parallel walls and three-
dimensional flow in a circular duct, Biot (1956b). In 1987 
Johnson, Koplik and Dashen published a general 
expression for the dynamic permeability in the case of 
random pores, leading to the Biot-JKD model. In this 
model, viscous stresses depend on the square root of the 
temporal frequency and only a non-dimensional physical 
parameter was involved. A generalization of this theory 
was given by Pride et al. (2004). 
A numerical approach to solving equations directly in the 
time domain was proposed by Masson and Pride (2010). 
This work consists of a simple discretization of the 
fractional derivatives, defined by a convolution product. 
Another approach, based on the diffuse representation of 
the fractional derivative, was proposed by Hanyga and Lu 
(2005). More recently, a time-domain numerical modeling 
of Biot poroelastic waves was proposed in Blanc (2014). 
The method is based on a diffusive representation and 
replacing the convolution kernel by a finite number of 
memory variables that satisfy local-in-time ordinary 
differential equations, resulting in the Biot-DA (diffusive 
approximation) model. 
Our procedure is based on a formalism introduced by 
Ursin (1983), who showed how Maxwell’s equations, the 
equations of acoustics and the equations of isotropic 

elasticity all have a similar mathematical structure in an 
appropriate way.  
In this paper, we add the equations of poroelasticity 
(higher frequency range) to Ursin’s list. We develop 
Ursin’s formalism for the case of a stack of homogeneous 
layers, i.e., when the material parameters are piecewise 
functions of the depth only. In this case many quantities 
can be computed with explicit algebraic formulas. 
For the low-frequency range a similar algorithm was 
developed by Azeredo (2013). 

Statement of the Problem  
We shall consider wave propagation in a porous half-

space 
   
R = Rkk=1

k=N∪ , composed with stratified layers 

   Rk = x = (x1,x2 ,z)∈R3 : zk < z < zk+1{ } , where 

   0 = z0 < z1 <!< zN+1 = ∞ . Let   u = (u1,u2 ,u3)  and 

  w = (w1,w2 ,w3)  be the solid and relative fluid 
displacements, respectively. The Biot-JKD equations 
(higher-frequency case) in the time frequency (ω ) 
domain, at each point  x ∈R , are (time dependence of 

 e− iωt  is assumed) 

 

		

−iω ρv + ρ f q( ) =∇⋅τ +F

−iω ρ f v + ρwq( ) = −∇p−Dq+ f
−iωτ = λc∇⋅v +C∇⋅q( )I +G ∇v +∇vT( )
		iωp=C∇⋅u+M∇⋅q

 (1) 

where 

		
ρ =ϕρ f +(1−ϕ)ρs ,ρw = Feρ f ,D= η

κ 0
1− iω

Ω
 

Here 		v = −iωu,q= −iωw  are the solid and relative fluid 

velocities,   F = (F1, F2 , F3) ,   f = ( f1, f2 , f3)  are the forces 
imposed on the solid and on the pore fluid, respectively, 
τ  is the stress tensor, 	p is the pressure in the pore fluid, 

		λc ,G  the Lamé coefficients, 		C ,M  the Biot moduli, 
	
ρ f  

the density of the pore fluid,	ρs  the density of the elastic 

sceleton, 	Fe  is the electrical formation factor, 	0<ϕ <1  is 

the porosity, 	κ 0  is the steady-flow (zero frequency) limit 

of the permeability, η  the pore fluid viscosity, 	Ω  is the 
circular frequency at which viscous boundary layers first 
develop, and 	I  is the identity matrix. We assume that all 
material parameters are represented by piece-wise 
constant functions depended only the depth coordinate 
	z , with the discontinuities at the points 
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		 z = zk ,k =1,2,…,N . At the discontinuity points 	zk  we 
suppose that the following functions are continuous: 

   [ p] = [q]⋅n = 0,[v] = [τ ]⋅n = 0, n = (0,0,1)T   (2) 

The free boundary conditions are 

   z = 0 : p = 0,τ ⋅n = 0  (3) 

And finally, at the infinity the solution satisfies the 
following radiation conditions: 

 
  
lim
x→∞

(v,q) = 0   (4) 

Method 

1. Ursin’s format. Consider the Fourier transforms in the 
two coordinates   x1,x2   

 
  
X̂ (k1,k2 ,z) = Fx1x2

( X ) ≡ e− i(k1x1+k2x2 ) X (x1,x2 ,z)dx1 dx2
R2
∫∫   

Let   (k1,k2 )T  be the horizontal wavenumber and 

  k = k1
2 + k2

2 ,γ = kω −1 . Applying the Fourier transform to 
(1) we obtain the EDO’s system represented in the terms 
of   f̂ , ĝ, v̂, q̂,τ̂ , p̂ .  

Let 

 

  

Ω = k −1

k1 k2 0

−k2 k1 0

0 0 k

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

The EDO’s obtained can be simplified if we define 

    !x = Ωx, !v = Ωv̂, !q = Ωq̂, !τ = Ωτ̂ΩT , !f = Ωf̂ , !g = Ωĝ, !p = p̂  

A straightforward calculation uncouples this system 

 
  
dΦ(m)

dz
= −iω M (m)Φ(m) + S (m) ,m = 1,2   (5) 

where   Φ(m)  are the   2nm - vectors (  n1 = 3,n2 = 1 ),  

defined as 

    Φ
(1) = ( !v3, !τ13,− !q3, !τ 33, !v1, !p)T ,Φ(2) = ( !v2 , !τ 23)T   

  S (m)  are the source   2nm -vectors, and   M (m) are the 

  2nm × 2nm -matrices 

 

  

M (m) =
0 M1

(m)

M2
(m) 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (6) 

with symmetric  nm × nm -matrices   M1
(m) , M2

(m)  and the 
submatrices and the corresponding source vectors giving 
in Appendix. 

2. Diagonalization. Let’s give briefly a derivation of the 
diagonalization procedure. We consider matrices of the 
form (6), where for simplicity we drop the superscript   (m) .  

Assume that   M1M2  has  n  distinct nonzero eigenvalues 

  
λ j

2 ,   j = 1,2,…,n , with associated eigenvectors 
 
a j , 

   j = 1,2,…,n , such that 
  
a j

T M2aj = λ j . Here
  
λ j = λ j

2  

with the branch chosen so that 
  
Im(λ j ) ≥ 0  and 

  
λ j > 0  is 

real if 
 
λ j is real. Define

  
bj = λ j

−1M2aj . This vector is an 

eigenvector of   M2 M1  with eigenvalue 
  
λ j

2 . Using 

symmetricity of   M1, M2  we obtain 
 
a j

T bi = δ j
i , where  δ j

i  

is the Kronecker delta.  

Let   L1  be the  n× n  matrix whose  j -th column is 
 
a j , 

and let   L2  be the  n× n  matrix whose  i -th column is  bi , 

then   L1
−1 = L2

T , L2
−1 = L1

T . Introduce  

    Λ = diag(λ1,λ2 ,…,λn )   

Then   L2Λ = M2L1  and   M1L2 = L1Λ , which implies  

   M1 = L1ΛL1
T , M2 = L2ΛL2

T   (7) 

Introducing the diagonal matrix   
!Λ = diag(Λ,−Λ)  and 

using (7), we finally obtain 

    M = L !ΛL−1   (8) 

 where  

 

  

L = 1
2

L1 L1

L2 −L2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, L−1 = 1
2

L2
T L1

T

L2
T −L1

T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

The explicit formulas for 
  
λ j ,aj ,bj  for Systems 1 and 2 

are given in Appendix.  
3. Reflection and transmission matrices. Firstly, we 
consider a homogeneous, source-free region of space. 
Dropping   (m)  we have a   2n -dimensional system of the 
form (5) with  M  constant and   S = 0 . Let  

   Φ = LΨ and Ψ = (U , D)T   (9) 
where   U , D  are  n -vectors, characterizing up-going ( U ) 
and down-going ( D ) waves. Then 

 
  
Ψ(z) = e− iωΛ( z−z0 )U (z0 ),eiωΛ( z−z0 )D(z0 )( )T

  (10) 

where   z0  is a fixed point in the same source-free region. 
Consider an interface at  z , where the material 
parameters vary discontinuously across  z . We denote by 
±  quantities evaluated at   z± = z ± 0 . Since Φ  is 
continuous across  z , we obtain  
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    Ψ± = J ±1Ψ∓   (11) 
where the jump matrix is  

  

J = (L+ )−1 L− ≡
J A JB

JB J A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, J −1 =
J A

T −JB
T

−JB
T J A

T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

and   J A, JB  are the  n× n -matrices 

  
J A =

1
2

L2
+( )T

L1
− + L1

+( )T
L2
−⎡

⎣⎢
⎤
⎦⎥
, JB = 1

2
L2
+( )T

L1
− − L1

+( )T
L2
−⎡

⎣⎢
⎤
⎦⎥

 

Next, we consider a stack of layers    0 < z1 <…< zN < ∞ . 

We have 
  
U N

− , DN
−( )T

= JN
−1 0, DN

+( )T
, where we have used 

that there is no up-going wave below the last interface at 

 z = zN .  So, we obtain 

   U N
− = ΓN DN

− , DN
+ = TN DN

−   (12) 
where 

 
  
ΓN = − JB,N

T( ) J A,N
T( )−1

,TN = J A,N
T( )−1

  (13) 

Here  ΓN  is the reflection matrix and  TN  is the 

transmission matrix from the last interface  z = zN , 

respectively. Let  j < N  and 
  
Δz j = z j+1 − z j , 

   j = 1,2,…, N −1 , is the layer thickness. Then by jumping 
across the layer boundary and using (10), (11) we obtain 

 

  

U j
− = J A, j

T eiωΛ jΔz jU j+1
− − JB, j

T e− iωΛ jΔz j Dj+1
−

Dj
− = −JB, j

T eiωΛ jΔz jU j+1
− + J A, j

T e− iωΛ jΔz j Dj+1
−

  (14) 

Define reflection and transmission matrices 
  
Γ j ,Tj  by 

 
  
U j

− = Γ j Dj
− ,U j

+ = Tj Dj
−   (15) 

From (14), (15) we obtain by induction 

 

   

Γ j = J A, j
T !Γ j+1 − JB, j

T( ) −JB, j
T !Γ j+1 + J A, j

T( )−1

Tj = Tj+1e
iωΛ jΔz j −JB, j

T !Γ j+1 + J A, j
T( )−1

  (16) 

where 
   
!Γ j+1 = eiωΛ jΔz jΓ j+1e

iωΛ jΔz j , and 
  
Γ j+1  is symmetric. 

Thus, all the reflection and transmission matrices can be 
calculated by (16), starting with (13).  
4. Sources and boundary conditions. Consider a   2n -
dimensional system of the form (5) with   (m)  omitted. Let 
the source be of the form 

   S = S0δ (z − zs )+ S1 ′δ (z − zs )   (17) 

with   S0 ,S1  independent of  z . Define  n -vectors 

 
  
SA,SB : SA,SB( )T

= iω MS1 − S0   

Using this formula we obtain the following jump condition 
across the source  

 
  
Φ(zs

− ) = Φ(zs
+ )+ SA,SB( )T

  (18) 

Inserting a fictitious layer boundary at  z = zs
+  we compute 

the reflection matrix   Γ s ≡ Γ(zs
+ ) . Since the material 

properties do not change at  zs , we have 

 
  
Ψ(zs

+ ) = Γ sDs , Ds( )T
  (19) 

where   Ds ≡ D(zs
+ ),Us ≡U (zs

+ ) . Using (9), (18) and (19)
we obtain 

  
Ψ(zs

− ) = Γ sDs , Ds( )T
+ 1

2
L2

T SA + L1
T SB , L2

T SA − L1
T SB( )T

 

This expression may now be propagated upwards 
through layers, using (10) and jumped upwards across 
layers boundaries until we reach the free surface at 

  z = 0+ . Then  n  boundary conditions at   z = 0  can be 
used to find the  n  unknowns  Ds .  

Consider one particular case when   zs ∈(0,z1) . In this 
case  

 

  

Ψ(0+ ) = eiωΛzsΓ sDs ,e
− iωΛzs Ds( )T

+

+ 1
2

eiωΛzs L2
T SA + L1

T SB( ),e− iωΛzs L2
T SA − L1

T SB( )( )T  

 (20) 
Define  

 
  
Φ(0+ ) = GAΦ0 ,GBΦ0( )T

  (21) 

For System 1, let 

   

Φ0
(1) = !v3,− !q3, !v1( )z=0+

T

GA
(1) =

1 0 0
0 0 0
0 1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,GB
(1) =

0 0 0
0 0 1
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

We can check that (21) holds for System 1 with the 
boundary conditions    

!τ13 = !τ 33 = !p = 0  at the free surface 

  z = 0 .  

For System 2, let  

   Φ0
(2) = !v2(0+ ) ,   GA

(2) = 1,GB
(2) = 0  

Then it may be checked that (21) holds for System 2 with 
the boundary condition  

!τ 23 = 0  at the free surface   z = 0 . 
Now using (9), (20) and (21) we obtain 
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Φ0 = eiωΛzsΓ se
iωΛzs L2

TGA − L1
TGB( )− L2

TGA + L1
TGB( )( )−1

×

×eiωΛzs Γ s L2
T SA − L1

T SB( )− L2
T SA + L1

T SB( )( )
Ds =

1
2

eiωΛzs L2
TGA − L1

TGB( )Φ0 −
1
2

L2
T SA − L1

T SB( )
   

(22) 

In particular, when   zs = 0+  we get 

 

  

Φ0 = (Γ s − I )L2
TGA − (Γ s + I )L1

TGB( )−1
×

× (Γ s − I )L2
T SA − (Γ s + I )L1

T SB( )
  (23) 

 Φ0  defines all of Φ  at the free surface, and 

  Ds ,Us = Γ sDs give all of Φ  just below the source. Now 

we are able theoretically to compute Φ in any  z ∈R+  by 
propagating trough the layers using (10) and (11).  

Remark. Propagation of an upward-going wave in the 
downward direction will be unstable numerically using 
(10), because the complex exponentials grow rather than 
decay with distance. Then numerically, one has to obtain 

 U  from  D  using 
 
Γ j , or the transmission matrix

 
Tj .  

Once  Φ(1)  and  Φ(2)  have been determined, we may 

compute 		 !q1 , !q2 , !τ11 , !τ12 , !τ22  using (33), see Appendix. 
Inverting the rotation transform, we can calculate the hat 
(^) variables, i.e., 

    v̂ = ΩT !v, q̂ = ΩT !q,τ̂ = ΩT !τΩ, p̂ = !p   (24) 

The matrices for Systems 1 and 2 depend only on the 
magnitude  k . However, the transformation (24) depends 

on   k1,k2 . For any function   ξ̂(k)  let 

  
Ξ j1, j2

ξ̂( ) ≡ Fx1x2

−1 k1
j1k2

j2ξ̂(k)( ) = (−i) j1+ j2 ∂x1

j1 ∂x2

j2 Fx1x2

−1 ξ̂(k)( )  

We can compute these quantities as Hankel transforms in 
the cylindrical coordinates   r,θ ,z . Define 

 
  
Bj1, j2

(ξ̂ ) = 1
2π

k j1

0

∞

∫ J j2
(kr)ξ̂(k)dk   

where  Jn  is the Bessel function and   j1, j2  are 
nonnegative integers. Then 

 

  

Ξ0,0 = B1,0 ,Ξ1,0 = icosθB2,1,Ξ0,1 = isinθB2,1

Ξ1,1 = sinθ cosθ B3,0 −
2
r

B2,1

⎛
⎝⎜

⎞
⎠⎟

Ξ2,0 = cos2θB3,0 −
cos2θ

r
B2,1

Ξ0,2 = sin2θB3,0 +
cos2θ

r
B2,1

  (25) 

These formulas are used to get the solution in real space.  

Examples 
1. Dynamite source. A dynamite source imposed on the 
solid and the fluid can be defined in the following form 

  f (x) = g(x) = −h(ω )∇δ (x − xs )  

where δ  is the Dirac function,   xs = (0,0,zs )  is the source 

position and   h(ω )  is the spectrum of the seismic 

moment. Applying the Fourier transform 
  
Fx1x2

we obtain 

  
f̂ = ĝ = −h(ω ) ik1δ (z − zs ),ik2δ (z − zs ), ′δ (z − zs )( )T

 

and rotation by Ω  yields 

 
   
!f = !g = −h(ω ) ikδ (z − zs ),0, ′δ (z − zs )( )T

  (26) 

Substitution of (26) into the source expression yields the 
source for System 1, in the form of (17), with  

 

  

S0
(1) = h(ω ) 0,ik −

ωρ f k
D − iωρw

, k 2

D − iωρw

,0,0,0
⎛

⎝
⎜

⎞

⎠
⎟

T

S1
(1) = h(ω ) 0,0,0,1,0,−1( )T

 (27) 

Substitution of (26) into the source expression for System 
2 shows that   S (2)  is zero, and then    !

"u2 , !τ 23  are zero too. 
This is to be expected result because System 2 is related 
to SH-waves, which are not excited by the dynamite 

source. Substitution of (27) into 
  

SA,SB( )T
= iω MS1 − S0  

gives 

 

  

SA
(1) = iβh(ω ) ω (C − M ),2kG( M −C),ω (λc + 2G −C)( )T

SB
(1) = 0,0,0( )T

 

 (28) 

Formulas (28) may be used in (22) or (23) for a shallow 
source, to obtain all the tilde (~) functions. To invert 
rotation Ω , using (24), note that    !v2 , !q2 , !τ12 , !τ 23  are 
identically zero. All the remaining tilde (~) functions 
depend of  k  only and can be calculated by the following 
formulas 

 

   

v̂1 =
k1

k
!v1, v̂2 =

k2

k
!v1, v̂3 = !v3

q̂1 =
k1

k
!q1, q̂2 =

k2

k
!q2 , q̂3 = !q3

τ̂11 =
k1

2 !τ11 + k2
2 !τ 22

k 2 ,τ̂12 =
k1k2( !τ11 − !τ 22 )

k 2

τ̂ 22 =
k2

2 !τ11 + k1
2 !τ 22

k 2 ,τ̂13 =
k1
!τ13

k

τ̂ 23 =
k2
!τ13

k
,τ̂ 33 = !τ 33, p̂ = !p

  (29) 
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Then the Fourier transforms 
  
Fx1x2

 can be inverted in 

cylindrical coordinates (  r,θ ,z ) using (25) to obtain the 
solid and fluid velocities 

 

   

v = iB1,1( !v1)( )er + B1,0 ( !v3)( )ez

q = iB1,1( !q1)( )er + B1,0 ( !q3)( )ez

  (30) 

where   er ,ez  are unit vectors in the   r,z  coordinate 
directions, respectively, and the stress tensor 
components and the pressure 

 

   

τ11 = Ξ2,0 (k −2 !τ11)+Ξ0,2 (k −2 !τ 22 ),τ12 = Ξ1,1(k −2( !τ11 − !τ 22 ))

τ 22 = Ξ0,2 (k −2 !τ11)+Ξ2,0 (k −2 !τ 22 ),τ13 = Ξ1,0 (k −1 !τ13)

τ 23 = Ξ0,1(k −1 !τ13),τ 33 = Ξ0,0 ( !τ 33), p = Ξ0,0 ( !p)

   

(31) 
2. Vertical source. We next consider a vertical point 
source acting on the free surface   z = 0 , i.e., 

  f (x) = g(x) = (0,0,1)T h(ω )δ (x1)δ (x2 )δ (z − zs )  

where   zs → 0+ puts the force on the free surface. This 
models hammer, weight drop, and vibroseis sources. 
Applying the Fourier transforms 

  
Fx1x2

 and rotation Ω  we 

arrive at 

    
!f = !g = f̂ = ĝ = (0,0,1)T h(ω )δ (z − zs )   (32) 

Substitution of (32) into the source expressions for 
Systems 1 and 2 yields  

  S
(1) = (0,0,0,−1,0,1)T h(ω )δ (z − zs ), S (2) = (0,0)T  

Thus, all the variables in System 2 are zero, as it was in 
the case of dynamite source. From (17) and definition of 

  SA,SB  we obtain 

  
SA

(1) = 0,0,0( )T
, SB

(1) = 1,0,−1( )T
h(ω )  

Now all the tilde variables at the free surface may be 
computed using (23) as   zs → 0+  and propagated 

anywhere else in space. Note   SA
(1) ,SB

(1)  are independent 

of   k1,k2 , so the tilde variables depend only on  k  and not 
on wave number direction. Therefore, similar to dynamite 
we can transform to the hat variables using (29) and 
transform back to the spatial variables using (30)-(31). 

Conclusions 
Based on the Ursin method, we have shown how the 
complete Biot-JKD equations (higher-frequency range) 
can be put into the Ursin form in a plane-layered medium. 
We have derived explicit formulas of the solution to a 
boundary-value problem formulated for these equations. 

Acknowledgments 
The first author thanks PRH-PB 226 program for the 
scholarship and LENEP/CCT/UENF for providing the 
conditions for this work.  

References 
AZEREDO, M.M. 2013. Modelagem Matemática e 
Computacional de Propagação de Ondas Sísmicas em 
Meios Poroelásticos Estratificados. Tese (Doutorado), 
Univesridade Estadual do Norte Fluminense Darcy 
Ribeiro.  
BIOT, M. A. 1956a. Theory of propagation of elastic 
waves in a fluid-saturated porous solid. I: Low-frequency 
range. The Journal of the Acoustical Society of America, 
28(2), 168-178. 
BIOT, M. A. 1956b. Theory of propagation of elastic 
waves in a fluid-saturated porous solid. II: Higher 
frequency range. The Journal of the Acoustical Society of 
America, 28(2), 179-191. 
BLANC, E. 2014. Time-domain numerical modeling of 
poroelastic waves: the Biot-JKD model with fractional 
derivatives. PhD Thesis, Aix-Marseille University. 
HANYGA, A. & LU, J.-F. 2005. Wave field simulation for 
heterogeneous transversely isotropic porous media with 
the JKD dynamic permeability. Computational Mechanics, 
36(3), 196-208. 
JOHNSON, D. L.; KOPLIK, J.; DASHEN, R. 1987. 
Theory of dynamic permeability and tortuosity in fluid-
saturated porous media. Journal of Fluid Mechanics, 
176(1), 379-402. 
MASSON, Y. & PRIDE, S. 2010. Finite-difference 
modeling of Biot’s poroelastic equations across all 
frequencies. Geophysics, 75(2), N33–N41. 
PLONA, T. J. 1980. Observation of a second bulk 
compressional wave in a porous medium at ultrasonic 
frequencies. Applied Physics Letters, 36(4), 259-261. 
PRIDE, S. R.; BERRYMAN, J. G.; HARRIS, J. M. 2004. 
Seismic attenuation due to wave-induced flow. Journal of 
Geophysical Research: Solid Earth, 109( B1). 
URSIN, B. 1983. Review of elastic and electromagnetic 
waves propagation in horizontally layered media. 
Geophysics, 48, 1063-1081. 
 



POROELASTIC MODELING: BIOT-JKD EQUATIONS 


Fifteenth International Congress of the Brazilian Geophysical Society 
 

6 
Appendix 

System 1. 

   

M1
(1) =

−βM βγ (C 2 − λc M ) −βC

βγ (C 2 − λc M ) ρ +
iωρ f

2

D − iωρw

− 4βγ 2G(C 2 − M (λc +G)) 2βγ GC −
iωρ fγ

D − iωρw

−βC 2βγ GC −
iωρ fγ

D − iωρw

−β(λc + 2G)+ iωγ 2

D − iωρw

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

M2
(1) =

ρ γ −ρ f

γ G−1 0

−ρ f 0 −
D − iωρw

iω

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

, S (1) = (0,− !f1 −
iωρ f

D − iωρw

!g1,
ik

D − iωρw

!g1,− !f3,0, !g3)T

 

There are three modes: fast compressional wave ( λ1
(1) ), Biot slow wave ( λ2

(1) ), and vertical shear wave ( λ3
(1) ). 

Eigenvalues: 

  

(λ j
(1) )2 = −γ 2 + β Cρ f −

Mρ
2

+ (λc + 2G)
D − iωρw

2iω
⎛
⎝⎜

⎞
⎠⎟
± β

2
(λc + 2G)

D − iωρw

iω
+ Mρ

⎛
⎝⎜

⎞
⎠⎟

2

− 4 Mρ f +C
D − iωρw

iω
⎛
⎝⎜

⎞
⎠⎟

Cρ − (λc + 2G)ρ f( ), j = 1,2

(with (+) for m=1  and (-) for m=2), and (λ3
(1) )2 = −γ 2 +G−1 ρ +

iωρ f
2

D − iωρw

⎛

⎝
⎜

⎞

⎠
⎟

 

Eigenvectors: 

  

a j
(1) = aj −1,2Gγ ,ζ j( )T

, j = 1,2,a3
(1) =

a3

λ3
(1) γ ,G(λ3

(1) )2 −Gγ 2 ,
iωγρ f

D − iωρw

⎛

⎝
⎜

⎞

⎠
⎟

T

bj
(1) =

aj

λ j
(1) 2Gγ 2 − ρ − ρ fζ j ,γ ,ρ f −ζ j

D − iωρw

iω
⎛
⎝⎜

⎞
⎠⎟

T

, j = 1,2,b3
(1) = a3 2Gγ ,1,0( )T

 

where 

  

ζ j =
Cρ − (λc + 2G)ρ f

(λ j
(1) )2 + γ 2

β
−Cρ f − (λc + 2G)

D − iωρw

iω

,aj =
λ j

(1)

ρ + 2ρ fζ j −ζ j

2 D − iωρw

iω

, j = 1,2,a3 =
λ3

(1)

Gγ 2 +G(λ3
(1) )2  

System 2. 
   
M1

(2) = G−1,M2
(2) = ρ −Gγ 2 +

iωρ f
2

D − iωρw

,S (2) = (0,− !f2 −
iωρ f

D − iωρw

!g2 )T . There is the horizontal shear wave mode 

only ( λ
(2) ) with 

  
 (λ (2) )2 = −γ 2 +G−1 ρ +

iωρ f
2

D − iωρw

⎛

⎝
⎜

⎞

⎠
⎟ ,a(2) = 1

Gλ (2) ,b(2) = Gλ (2)  

Here   β = (C 2 − M (λc + 2G))−1 . Dependent variables are calculated by the following formulas: 

   

!q1 =
1

D − iωρw

(−ik!p + iωρ f !v1 + !g1), !q2 =
iωρ f

D − iωρw

!v2 +
1

D − iωρw

!g2 , !τ12 = −Gγ !v2

!τ11 = β −4γ G(C 2 − M (λc +G)) !v1 + (C 2 − λc M ) !τ 33 + 2GC!p{ }, !τ 22 = β −2γ G(C 2 − λc M ) !v1 + (C 2 − λc M ) !τ 33 + 2GC!p{ }
(33)

 


