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Abstract

Seismic inversion methods are highly sensitive to
noise present in the data set. The need to enhance
the signal-to-noise ratio (SNR) motivates many
researchers do develop increasingly sophisticated
denoising methods and combine them into other
techniques. While some methodologies operate on
a single scale, the curvelet transform established
itself as multi-scale transform useful to decompose
the seismic signals into multi-resolution elements.
In this study, we evaluate the benefits of curvelet
denoising as a preconditioning method for poststack
seismic data in a 2D acoustic inversion process using
a Bayesian framework. Our tests on a synthetic data
set simulated in the Marmousi model, and a real
data set from the Campos Basin offshore Brazil have
shown that the curvelet thresholding method can be
successfully applied for random noise elimination.
Even the use of a hard global threshold might allow
improvements in the deepest parts. Future work will
have to show whether alternatives that ensure a more
robust way of selecting the coefficients can take into
account the wavelength change with depth.

Introduction

The aim of seismic inversion methods is to provide a
subsurface model which is coherent with the recorded
seismic data. Field data applications often face a problem
with strong noise influence. The presence of noise brings
instability to the seismic inverse problem and makes it
hard to estimate a reliable acoustic impedance model,
jeopardizing the estimation of the wavelet and even the
impedance itself.

In the majority of denoising applications, we face the
challenge of restoring the energy of the high-frequency
part of the data without degrading the signal-to-noise
(SN) ratio. This has motivated researchers to investigate
sophisticated denoising techniques like the localized slant
stack (McMechan, 1983), T-X prediction filtering (Abma and
Claerbout, 1995), and the sparse transform-based method
(Yuan et al., 2015) for random noise attenuation. Other
techniques include the wavelet transform (Shan et al.,
2009), which is able to detect local features in the time-
frequency, and the S-transform adopted by (Parolai, 2009).
All these techniques operate on a single scale.
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Figure 1: Four curvelets with different scale (left)
and angles represented in both spatial- and frequency-
wavenumber domains (right).

Candès and Donoho (2000) proposed the Curvelet
Transform (CT), a new multi-scale transform that allows
to decompose the seismic signals into multi-resolution
elements. It acts in both the space-frequency domain
and the angular orientation (Mallat, 1999). Moreover,
the features of curvelet decomposition proved it to be an
adequate tool for application in many steps of seismic data
processing (Ma and Plonka, 2010). Some applications
include the random-noise suppression by the combination
of the thresholding method with a nonuniformly sampled
curvelet transform (Hennenfent and Herrmann, 2006;
Hennenfent et al., 2010), the application of the curvelet
denoising method to 2D and 3D seismic data (Górszczyk
et al., 2014; Neelamani et al., 2008), multiple attenuation
(Herrmann and Hennenfent, 2008), and migration (Chauris
and Nguyen, 2008).

In this work, we evaluate curvelet denoising as a
preconditioning technique for poststack seismic data in an
acoustic inversion process. We investigate its performance
in noise suppression to a limit where visual and numerical
artefacts become significantly dangerous to the data. It
is to be noted that well-conditioned data guarantee faster
convergence of the inversion. We study alternatives that
allow to obtain better results from the inversion of data with
significant noise. To perform our evaluation, we choose two
examples: the synthetic Marmousi model (Versteeg, 1994)
and a real dataset from the Marimba oil field in the Campos
Basin offshore Brazil. Both analyses provide encouraging
results.

Methodology

The proposed method consists of two main stages. During
the first stage, preconditioning, we attempt to filter out
unwanted information employing the curvelet denoising
with a thresholding procedure. During the second stage,
seismic data inversion, we try to achieve the same goal
using a Bayesian acoustic poststack approach. In the next
sections, we present a brief overview of the concepts.
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Figure 2: Marmousi P-velocity model and its 276th trace.

Curvelet denoising for seismic data

Seismic data are composed of reflections with considerable
continuity across volume sections. Therefore, the
reflections can be seen as geometric features, composed
mostly, of line (2D) and surface (3D) singularities.

In denoising, the data are usually transformed to some
sparse domain, and coefficients associated with noise are
filtered out. Hence, for seismic purposes, transformation
must assure the mentioned singularities are precisely
reconstructed after coefficient filtering.

A well know sparsity-promoting transform is the Wavelet
Transform (WT). However, even though it performs well
for objects with point-like discontinuities, in 2D it fails
for events with curve-like singularities, because of its
isotropic elements. The Curvelet transform (CT) with highly
directional-sensitivity and anisotropic elements (Ma and
Plonka, 2010) can overcome this WT drawback.

The Curvelet transform was first presented in Candès and
Donoho (2000). drawbacks in its algorithm discretization
led to development of the second generation Discrete
Curvelet transform (DCT) in Candès and Donoho (2003).
This transform is a tight-frame capable of a near-optimal
sparse representation of objects with discontinuities along
smooth curve-like features by series expansion using
needle-shaped elements.

Using indexes j for scale, k for rotation and l = (l1, l2) ∈ Z2

for translation, curvelets can be defined for a continuous R2

space as a function of x = (x1,x2), by

ζ j,k,l(x) = ζ j(Rθ j,k (x− x( j,k)
l )). (1)

Here, Rθ j,k is the rotation matrix by angle θ j,k = 2πk ·2−b j/2c

with k ∈ N0, and each spatial position x( j,k)
l is defined

as R−1
θ j,k

(l12− j, l22− j/2). Therefore curvelets are obtained
through anisotropic dilations, rotations and translations of
a mother waveform, and the CT coefficients are the inner
product of these curvelets and the data being analyzed.

Curvelets have compact support in the frequency domain
and each one can be mapped to a localized polar wedge
obeying the anisotropy scaling relation: length ∝ width2.
These wedges are functions of a pair of windows called
W (r) and V (a), usually referred to as radial and angular
windows, with r ∈ (1/2,2) and a ∈ [−1,1], through the
relation:

U j(r,θ) = 2−3 j/4W (2− jr)V (
2−b j/2cθ

2π
), (2)

with r and θ denoting polar coordinates in the frequency
domain. Window W (r) partitions the frequency domain into
ring-shaped regions and V (a) divides it into wedges, as
exemplified in Figure 1.

Candès et al. (2006) showed a digital implementation of the
second generation CT. For this purpose, they developed
two new fast discrete curvelet transforms (FDCTs) via
unequally spaced fast Fourier transform (USFFT) and via
wrapping of specific Fourier samples.

In this work, we adopted the wrapping-based digital
implementation of the FDCT because it represents a tight
frame and is computationally faster than the USFFT-based
one. To perform our numerical experiments, we use the
software package CurveLab (Candès et al., 2006, available
at http://www.curvelet.org), which contains the Matlab and
C++ implementations of both the USFFT-based and the
wrapping-based transforms.

We combine FDCT denoising with the method of Starck
et al. (2002), which assumes the coefficients to be
corrupted by additive noise. The procedure consists of
calculating, from an initial noise estimate using Monte
Carlo simulations, an approximate value for the noise
amplitude (standard deviation σ̃k of the noise-corrupted
data at each scale). At the next step, it applies an adaptive
hard-thresholding rule to determine the reliable coefficients
ŷk, which rise significantly above the noise level, as{

ŷk = yk, if |yk| ≥ τσ̃k

ŷk = 0, if |yk|< τσ̃k
. (3)
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Table 1: Results from Marmousi test.
Threshold

(×σ )
PSNR Error

Value (dB) Change

5 24.59 +2.11 0.24
7.5 25.67 +3.25 0.14
10 26.23 +3.79 0.10
12 26.12 +3.70 0.07

Here τ represents the relative threshold value controlling
how much information will be filtered out.

Poststack acoustic seismic inversion

A noteworthy problem of seismic inversion is the absence
of low-frequency information in the seismic data. Pursuing
a good initial model input as an a-priori constraint is
a reasonable workaround to this barrier. In addition
solving for a sparse spike-like reflectivity is an elegant
mathematical solution to increase the bandwidth.

Within a Bayesian framework, both sparsity ensuring
regularization norms (e.g. L1, Huber, Cauchy) and
constraint dependence can be introduced to estimate a
blocky impedance model (Ulrych and Sacchi, 2005). The
objective function takes the form:

J = κ|r|L1 +
1
2
‖ 1

σ̃
(Wr− s)‖2 +

1
2
‖N−1(Cr−B)‖2 , (4)

where the first term is the sparsity norm (L1) of the
reflectivity model (r), the second term is responsible for
minimizing the misfit between observed (s) and calculated
(Wr) data, and the last term constrains the model using the
a-priori information.

In equation 4 above, κ ponders sparsity in the estimated
reflectivity (r), σ̃ is an estimate of the noise level, W is the
wavelet convolution matrix, C an integration operator and
B is the natural logarithm of the normalized impedance.
The term N is the diagonal matrix Nk,k = λk responsible
for constraining the solution, where λ is a vector of
uncertainties of the a-priori information.

At last, it must be noted that the choice of both κ and
σ , as well as the construction of the initial model, are
initial steps in the inversion. Particular care has to be
taken in these choices, because these parameters will
define convergence to the global minimum of the objective
function.

Applications

We test the proposed inversion with curvelet denoising
preconditioning by applying it to synthetic and real data.
Initial tests were performed considering pseudo-random
white Gaussian noise (not shown here). Other tests were
performed using data contaminated with colored Gaussian
noise which has a higher influence on the low-frequency
band of data (where inversion methods are more sensitive).
Therefore, it is paramount for denoising techniques to be
able to treat it.

To better understand the behavior of curvelet denoising,
we evaluated errors with different standard deviations (σ ),

and thresholds were adaptively chosen with respect to
the noise level. We used the peak signal-to-noise ratio
(PSNR) and the L2-norm of the difference, respectively, to
quantify the performance of the denoising and inversion in
our approach.

Synthetic example - Marmousi model

As a first test, we applied the presented approach to
a synthetic data from the Marmousi model (Versteeg,
1994), shown in Figure 2. The acoustic seismic volume
was modeled using the convolutional model considering a
Ricker wavelet with 20-Hz peak frequency.

To evaluate how denoising can influence inversion, we
contaminated the data using three levels of colored random
noise (σ = 10e-3, 20e-3, and 30e-3) and used relative
threshold values of 5, 7.5, 10 and 12. The seismic data
inversion uses an initial noise estimate of 5e-2 by means of
the Bayesian acoustic poststack approach.

Table 1 summarizes the filtering and inversion results for
all threshold values. The PSNR column is divided into
two columns, one showing its value after denoising and
the other (change) if it increased (positive) or decreased
(negative) compared to the noisy data. The fourth column
represents the error from inversion.

The results show that, up to a relative threshold of 10,
an increase in the threshold leads to an increase in
PSNR value, indicating that the lower coefficients carry
predominantly noise. The behavior inverts when further
increasing the threshold to 12. This can be attributed to the
fact that filtering out more coefficients will possibly affect
the ones associated with the most prominent reflections
and certainly the localized high-amplitude anomalies,
reducing the maximum dataset value and thus the PSNR.
This filtering of information other than noise can be seen by
the severe attenuation mostly of the shallower reflections
considering a threshold of 12σ .

A drawback of curvelet denoising are linear events, not
physically consistent, that can appear in the seismic
section crossing the actual reflections. For an example,
see the leftmost image in Figure 3. leftmost image)
These events are characteristic of curvelet thresholding,
representing weak-amplitude curvelets that emerge after
inverse curvelet transform. They can be easily removed by
directional control (i.e., filtering curvelets by dip).

The profiles in the right part of Figure 3 show the result
of filtering with a threshold of 12σ for both noise levels. It
is evident from this figure that the noise was not removed
to guarantee a good visual quality even though relevant
reflections can still be distinguished from noise. Moreover,
small-amplitude reflections are hardly recovered, and close
events (peaks and troughs in data) are not resolved, in the
worst-case scenario being reconstructed as one.

Inversion results considering a noise level of σ = 20e-3
are shown in Figure 4. It can be noticed that denoising
improves the inversion results. Moreover, it is difficult to
decide which of the thresholds 10 or 12σ gives the best
results. This indicates that both values are close to the
optimum threshold, even though both lead, in general, to
lower reflectivity values than the real model, probably due
to a lack of low-frequency content in the data.
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Noisy data, σ=20e-3 PSNR=26.091
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Figure 3: Denoising results considering a relative threshold of τ = 12, i.e., accepting only coefficients with values of at least 12
times the noise level. The data were contaminated with a σ = 20e-3 noise.
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Figure 4: Inversion results for traces 76 and 276 for data contaminated with a σ = 20e-3 noise, and using all threshold values.

Applications to real data

We next applied our denoising technique to a real data set
from the Marimba oil field in the Campos Basin offshore
Brazil. Figure 5 shows a section of the seismic volume
including a reservoir and additional information from three
wells inside the volume, used for low-frequency model-
building.

In the denoising analysis, we assumed four different
noise intensities (σ = 10e-3, 20e-3, 30e-3 and 50e-
3). We used the same thresholds as in the synthetic
case. Furthermore, the inversion analysis used both
statistical and deterministic wavelets to understand better
how denoising behaved in both scenarios and considered
an initial noise estimate of 5e-4.

For a reference model, we used an inversion (indicated
as HR inversion in Figure 7) from commercial software
(HampsonRussell suite, CGG).

Table 2 shows the results for the real-data case with
colored noise with σ = 30e-3. Its format is the same as the

Table 2: Results from real data tests (trace 156, inline 69).
Threshold

(×σ )
PSNR Error

Stat.
Error
Deter.Value (dB) Change

5 28.98 +0.45 0.15 0.35
7.5 28.82 +0.29 0.11 0.26
10 28.41 -0.12 0.09 0.26
12 27.86 -0.67 0.10 0.24

previous table except for the last two columns, associated
with the inversion error for the two different wavelets.

Figure 6 exhibits similar features to the ones discussed in
the previous section for the synthetic data, except for the
linear artifacts. However, in the upper part of the section
the amplitudes are somewhat attenuated, which makes the
existing small faults difficult to observe.

The inversion analysis (Figure 7) shows that the results
from the deterministic are stable as expected and do not
vary much, while the statistical case allows for a better
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Figure 5: Seismic volume with log positions indicated and the acoustic impedance log for each well.

analysis of the denoising influence in the inversion. For the
latter, as before, thresholds of τ = 10 and 12 yielded the
best results, closer to the reference model (HR inversion).

Conclusions

We investigated the benefits of curvelet denoising
together with an adaptive hard-thresholding rule as a
preconditioning method to poststack seismic data in an
acoustic inversion procedure. To evaluate if the curvelet
denoising was able to increase the resolution without
degrading the SNR, two data sets were contaminated with
white and colored noise for different signal-to-noise ratios,
being the highest values of noise uncommon in a pre-
processed seismic data.

The tests, performed on synthetic data from the Marmousi
model and a real data set from the Marimba oil field in the
Campos Basin offshore Brazil, led to similar conclusions.
The methodology clearly increased the SNR. The quality
of the achieved improvements depended on the choice of
the coefficients.

Because our filtering is based on a global threshold
assumption, the increment in the wavelength with depth is
not considered. The decreasing of the SNR in shallower
parts of the model is a consequence of the application of
a hard threshold value, which was used in an attempt to
achieve improvements in deeper parts.

Future investigations will have to find alternative strategies
of filtering that are capable of reducing the noise of the
coefficients in an efficient manner so that coefficients
associated with events of lower energy are not filtered
with the same threshold as coefficients associated with
higher energy. Furthermore, the methodology provided
encouraging results to justify evaluating it in a seismic
inversion of prestack seismic data, e.g., amplitude variation
with offset and full-waveform inversion.
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