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Abstract 

The representation of compressional seismic velocities 
fields, originated from geological models, by means of 
numerical parameters has a basic geophysical 
importance, because it makes possible to quantify such 
qualitative models, allowing mathematical manipulation. 
The parameterization by Haar wavelet series can be seen 
as an attractive alternative to quantify such geological 
models. The pyramidal algorithm can be used to obtain a 
multi-scale wavelet series and, also, it helps in the 
application of filters and techniques for coefficients 
reduction that assures an optimized parameterization of 
the model, with substantial parameter reduction without 
significant loss in the model representation. In this work, it 
is accomplished the parameterization of a mathematical 
function (with some degree of complexity) and, at same 
time, a geologic models already known (schematic 
synclinal) in order to verify the capacity of the wavelet 
series (linear combination of simpler functions) to 
represent them, in an acceptable way, using coefficients 
provided by the pyramidal algorithm. After certification of 
the possibility to parameterize models with a small 
number of coefficients, it is done synthetic traveltime data 
modeling on the current model, using ray-tracing 
techniques, and, then it is applied an inversion process 
defined by the Metropolis method. It aims convergence to 
a target model previously proposed. In this way, 
coefficients of the 1D Haar wavelet series are used as 
parameters of the model to be estimated by a 
tomographic inversion procedure. 

Key-Words: Haar Wavelet Series, Seismic Velocity Field, 
Traveltime, Metropolis Method, Parameterization, 
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Introduction 

A mathematical problem of great interest, not only 
theoretically, but also with respect to applications, is that 
relating to the representation (or decomposition) of 
functions with a high degree of complexity as a linear 
combination (series) of functions that are simpler or 
easier Manipulated (Cerqueira & Figueiró, 2012), (dos 
Santos & Figueiró, 2006) and (Bastos, 2013). Like the 
already known series, the wavelet series are defined 
(Morettin, 1999) as mathematical functions capable of 
decomposing, representing or describing other functions. 

In order to allow the analysis of these functions at 
different scales, such series are used. With respect to the 
observed data, they are used: in their representation, in 
their compression and in the attenuation of noises present 
in them (Misiti et al., 2007). In addition, it is applied 
constantly in areas of science and technology such as: 
physics, electrical engineering, geophysics, and etc. (Lee 
& Yamamoto, 1994). 
          In the 1930s, many researchers independently 
developed papers that served as the basis for more 
recent work. The first author to mention the term wavelet 
was Alfréd Haar in his thesis (Haar, 1910) and the formal 
concept of wavelets, which is currently known, was first 
proposed by Jean Morlet with the help of A. Grossman 
(Polikar, 1999). The idea resembles that proposed by 
Fourier, which consists of the decomposition of periodic 
and piecewise continuous functions into a sum of 
coefficient-weighted sine-functions. 
          The wavelet series represents continuous and 
discontinuous functions by a linear combination of simpler 
functions belonging to a base. In the multi-scale version 
of the wavelet series it is possible to obtain its coefficients 
from the pyramidal algorithm (Cunha, 2009), or, also, 
known as the discrete wavelet transform. The 
parameterization of a compressional seismic velocities 
field, corresponding to the schematic model of a synclinal, 
using the wavelet Haar series with coefficients obtained 
using the pyramidal algorithm is carried out in this work. 
This allows to classify the coefficients according to 
different levels of scale, aiming to control on which (and 
how) such coefficients can be eliminated without 
significant loss in the quality of the representation of the 
field, with a view to reducing to the number of coefficients 
used. Coefficient reduction techniques are applied in 
conjunction with the pyramidal algorithm. 
          In a later step, the synthetic data modeling is 
performed. The ray tracing technique proposed by 
Cervený (2001) was implemented in a way that allows the 
calculation of the time that waves spend to traverse the 
path that connects the positions of sources and receivers 
(Perin & Figueiró, 2010), generating a profile of 
traveltimes and, thus, partially simulating a real seismic 
acquisition. By, initially, treating the velocity field in a 
discrete mode, and not as continuous functions, it was 
necessary to implement interpolation techniques for 
the calculation of derivatives required in ray tracing. 
          Current models parameterized by the Haar 
wavelet series are submitted to an inversion 
process that aims to obtain a model that minimizes 
the difference between the observed and calculated 
data. A global scope inversion method, known as 
Metropolis, was used to obtain such a model, taking 
into account a stopping criterion. This method uses 
traveltime data having as parameters of the model 
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the coefficients of the Haar wavelet series that 
represent a velocity field. 

Theoretical Aspects 
Wavelet Series 

From a function ߰, of zero mean and finite energy, called 
wavelet function, a wavelet basis is defined as that 
constituted by functions of the type ߰,, called daughter 
wavelets. These functions are generated by a binary 
dilatation 2 and a dyadic translation ݇. 2ି of the function 
߰, where the indices ݆ and ݇ א  Ժ. The wavelet series 
representation considers amplifications, dilatations (or 
contractions), and translations of this unique function, ߰, 
in order to obtain an approximation, as exact as possible, 
of the function to be represented. This orthogonal basis of 
functions obeys the form given by Eq. (1) (Morettin, 
1999): 

߰,ሺݐሻ ൌ 2 ଶ⁄ ߰൫2ݐ െ ݇൯, where ݆ and ݇ א Ժ.                  (1) 

If the system (߰,) forms an orthonormal basis of ܮଶሺԹሻ, 
space of real functions of real variable and square 
integrable; then, there exist coefficients ܿ, that make 
possible to represent a function ݂ሺݐሻ א  ଶሺԹሻ, defined in aܮ
limited interval and of zero average, as follows: 

݂ሺݐሻ ൌ ∑ ∑ ܿ,. ߰,ሺݐሻା∞
ୀି∞

ା∞
ୀି∞ .                                      (2) 

Eq. (2) is called the wavelet series and its coefficients are 
given by: 

ܿ, ൌ ,݂ۃ ߰,ۄ ൌ  ݂ሺݐሻାஶ
ିஶ ߰,ሺݐሻ݀(3)                                    .ݐ 

The Haar Scale Function 

The Haar scale function is defined by: 

߶ሺݐሻ ൌ ൝
0,    se െ ∞ ൏ ݐ ൏ 0
1,           se 0  t ൏ 1
0,   se 1  ൏ ݐ  ∞,

                                            (4) 

whose graph is shown in Figure 1. 

 
Figure 1: The Haar scale function (Cerqueira, 2015). 

The Haar scale function can produces a function basis in 
the same way as indicated by Eq. (1), generating the 
following orthogonal family: 

ሻ࢚ሺ,ࣘ ൌ  ⁄ ࣘ൫࢚ െ ,൯ ି :࢚  ࢚  ሺ  ሻି(5)      . 

It is easy to see that ߶ has the following property: 

߶ሺݐሻ ൌ  ߶ሺ2ݐሻ  ߶ሺ2ݐ െ 1ሻ.                                              (6)     

The Haar Wavelet Function 

The Haar wavelet function is defined by: 

߰ሺݐሻ ൌ

ە
۔

ۓ
0,   se െ ∞ ൏ ݐ ൏ 0
1,  se 0  ݐ ൏ 1 2⁄

െ1, se 1 2  ݐ ൏ 1⁄
0,  se 1  ݐ ൏ ∞,

                                                    ሺ7ሻ 

whose graph is shown in Figure 2. 

 
Figure 2: The Haar wavelet function (Cerqueira, 2015). 

It is easy to see that ߶ and ߰ have the following property: 

߰ሺݐሻ ൌ  ߶ሺ2ݐሻ െ ߶ሺ2ݐ െ 1ሻ.                                              (8)     

The system 

൛߶బ,,  ߰,;  where ݆,  ݆  ݆ and ݇ א Ժൟ                           (9) 

is orthonormal. Then, it allows to rewrite ࢌሺ࢚ሻ, that 
appears, in Eq. (2) as: 

ሻ࢚ሺࢌ ൌ ∑ .,ࢊ ∞ሻା࢚ሺ,ࣘ
∞ୀି  ∑ ∑ .,ࢉ ∞ሻ,ା࢚ሺ,࣒

∞ୀି
ା∞
ஹ

   (10) 

where 

݀బ, ൌ ,݂ۃ ߶బ,ۄ ൌ  ݂ሺݐሻାஶ
ିஶ ߶బ,ሺݐሻ݀(11)                              .ݐ 

The daughter wavelets of ࣘ and ࣒ are given, 
respectively, by: 

߶, ൌ ൜2 ଶ⁄ ,  se ݇2ି  ݐ ൏ ሺ݇  1ሻ2ି

0,                          otherwise
                            (12) 

and 

߰,ሺݐሻ ൌ ቐ
2 ଶ⁄ ,  se   ݇2ି ൏ ݐ ൏ ሺ݇  1 2⁄ ሻ2ି

െ2 ଶ⁄ , se   ሺ݇  1 2⁄ ሻ  t ൏ ሺ݇  1ሻ2ି

0,                                 otherwise.
          (13) 

Pyramidal Algorithm 

The Haar pyramidal algorithm (also known as the discrete 
wavelet transform) calculates, recursively, the coefficients 
of expansion given by Eq. (10), represented by Eqs. (3) 
and (11), using coefficients of scale ݈ ൌ 0 of the basis 
൛߶,ൟ to get coefficients of the more refined scales by 
means of the following equations: 

߶,ሺݐሻ ൌ ଵ
√ଶ

ൣ߶ିଵ,ଶሺݐሻ  ߶ିଵ,ଶାଵሺݐሻ൧,                         (14) 
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as this relation is valid for all ݈ א Ժ, we can rewrite it by 
moving the index ݈ of a unit, like this: 
 

߶ାଵ,ሺݐሻ ൌ ଵ
√ଶ

ൣ߶,ଶሺݐሻ  ߶,ଶାଵሺݐሻ൧.                             (15) 

Using Eq. (8), it is possible to write: 

߰,ሺݐሻ ൌ ଵ
√ଶ

ൣ߶ିଵ,ଶሺݐሻ െ ߶ିଵ,ଶାଵሺݐሻ൧                          (16) 

and 

߰ାଵ,ሺݐሻ ൌ ଵ
√ଶ

ൣ߶,ଶሺݐሻ െ ߶,ଶାଵሺݐሻ൧.                             (17) 

Applying the operator ݂ۃሺݐሻ,·ۄ to all terms of Eqs. (15) and 
(17), and using Eqs. (3) and (11), we can write: 

݀ାଵ, ൌ ଵ
√ଶ

൫݀,ଶ  ݀,ଶାଵ൯                                            (18) 

and 

ܿାଵ, ൌ ଵ
√ଶ

൫݀,ଶ െ ݀,ଶାଵ൯.                                           (19) 

Figure 3 represents the pyramidal algorithm used to 
obtain the coefficients of a function ݂ሺݐሻ from the scale 
݈ ൌ 0 until ݈ ൌ 3 (ܰ௫ ൌ 7 ൌ 2ୀଷ െ 1ሻ. 

 
Figure 3: Diagram illustrating the pyramidal algorithm scheme to 
obtain coefficients of a wavelet series (Cerqueira, 2015). 

Some Considerations 

Some auxiliary topics necessary for the realization of the 
seismic inversion are, in this abstract, omitted. All can be 
found, in detail, in Cerqueira (2015). Such topics are 
related to the: seismic ray-tracing, traveltimes calculation, 
Metropolis method, numerical models generation, 
technique of previous reduction of model parameters, 
numerical differentiation, interpolation technique, 
calculation of traveltimes relative differences and also 
between models, acquisition system, and other very 
specific auxiliary tools. 

Results 

The Synclinal Model 

The schematic geological model of the syncline, ܯ, is 
represented by Figure 4, it represents a very common 
situation in geology in regions where converging efforts 
occur. The numerical model, ܯே, (Figure 5) expresses 
like a matrix the seismic velocity field model ܯ used for 
parameterization. As ܯ is a model with little geological 

complexity, it was possible to generate it from a 
mathematical function. 
          Knowing that ݒሺݎሻ ൌ ଷ√ଶ

଼
 2 with 

ݎ ൌ ඥሺݔ െ 4ሻଶ  ଶ and 0ݖ  ݎ  4√2, we create the 
auxiliary variable ߦ ൌ ߦ ,Then .2√ݎ2 א ሾ0, 16ሿ ൌ ሾ0, 2ସሿ and 
ሻߦሺݒ ൌ ଷక

ଵ
 2. Therefore, as ߦ ൌ ඥ8ሾሺݔ െ 4ሻଶ   ଶሿ, inݖ

terms of a function of two variables, ݒ is given by: 

,ݔሺݒ ሻݖ ൌ ,ݔሺߦሾݒ ሻሿݖ ൌ ݒ ቂ2√2ඥሺݔ െ 4ሻଶ  ଶ ቃݖ ൌ
ଷ
଼

ඥ2ሾሺݔ െ 4ሻଶ  ଶሿݖ  2.                                                 (20) 

 
Figure 4: Schematic synclinal model (Cerqueira, 2015). 

 
Figure 5: Numerical model ܯே referring to model ܯ. It was use 
16 terms in the wavelet series that parameterizes such velocity 
field as a function that describes radially the syncline (Cerqueira, 
2015). 

Model Parameterization 

The parameterization of the numerical velocity field, which 
resulted in the ܯ model, was as a function of the 
variation of a radius א ݎ ൣ0,  4√2൧ centered on ሺ4, 0ሻ. The 
velocity ݒሺݎሻ has a behavior as shown in Figure 6, which 
resulted in the model shown in Figure 7. The 
parameterization carried out using the pyramidal 
algorithm to obtain the coefficients ݀, and ܿ, and so the 
velocity field is represented as the linear combination of 
functions of the Haar basis. Nevertheless, because it is a 
function of only one variable, it was possible to represent 
this model by the wavelet series with only five 
parameters. 

Ray Tracing on the Model 

The ray tracing technique is applied in the parameterized 
model ܯ (Figure 7) with the objective to generate the ray 
field (Figure 8) and the traveltime profile (Figure 9) which 
is used as a synthetic observed data in the Metropolis 
inversion algorithm. The simulation is done with the 
source located in the zero position of the model ሺݔ ൌ
  .ൌ0ݖ ,0
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          The numerical value for the ray parameter, used in 
the ray tracing on this model, was 0.015 ݇݉ଶ.  .ଵିݏ

 
Figure 6: Variation of the velocity field ܯே as a function of the 
radial direction ݎ centered at the point ሺ4, 0ሻ, Cerqueira (2015). 

Figure 7: Parameterized model ܯ indices ݈ and ݇ ranging from: 
݈ ൌ 1 to ݈ ൌ 4, and ݇ ൌ 0 to ݇ ൌ 7, using 5 coefficients, since 
coefficients ܿ, were made equal to ܿ for all ݇ א ሼ1,2,3ሽ. This 
model is renamed to ்ܯ, since it is the target model of the 
inversion performed (Cerqueira, 2015). 

 
Figure 8: Ray-tracing in the parameterized model ܯ, with 1,500 
rays leaving the source located on the surface at position (0, 0), 
Cerqueira (2015). 

 
Figure 9: Profile of synthetic times obtained through the tracing 
of 1,500 rays on the parameterized model ܯ (Cerqueira, 2015). 

Seismic Inversion 

An efficient parameterization of the numerical model ܯே 
is carried out and ܯ is considered as the target model, 

 is (ைܯ) of the inversion process, whose initial model ,்ܯ
presented in the Figure 10 and with coefficients shown in 
Table 1. The profile traveltime relative difference for 
models ்ܯ and ܯை is 136,15 %. The inverted model, ܯூ, 
is presented in Figure 11. 

 
Figure 10: Initial model, ܯை, used in the inversion process using 

the Metropolis algorithm (Cerqueira, 2015). 

 
Figure 11: Inverted model, ܯூ, parameterized with 5 
coefficients, obtained by Metropolis inversion method (Cerqueira, 
2015). 

Model ݀ସ, ܿସ, ܿଷ ܿଶ ܿଵ 
ை 14.000ܯ െ8.000 0.000 0.000 0.000 
14.365 ்ܯ െ2.995 െ1.059 െ0.374 െ0.132
ூ 14.934ܯ െ3.166 െ0.975 െ0.196 0.220 

Table 1: Coefficients used in the representation of the model: 
 .ூܯ  and ,்ܯ ,ைܯ 

The Metropolis inversion process required 2,772 iterations 
for convergence, with many models rejected because 
they presented velocities much higher or lower than the 
limits of the range of valid seismic velocities. The stopping 
criterion is the relative error between observed and 
calculated data less than 10 %. The traveltime relative 
difference between profiles of ܯூ  and ்ܯ was 
approximately 9,97 %, showing again the good success of 
the procedure using the global scope inversion technique. 
          Figure 12 shows the relative error between inverted 
model ܯூ and the parameterized target model ்ܯ. It was 
considered the following relations between parameters:  

ܿଷ, ൌ ܿଷ,ଵ ൌ ܿଷ; ܿଶ, ൌ ܿଶ,ଵ ൌ ܿଶ,ଶ ൌ ܿଶ,ଷ ൌ ܿଶ; and ܿଵ, ൌ
ܿଵ,ଵ ൌ ܿଵ,ଶ ൌ ܿଵ,ଷ ൌ ܿଵ,ସ ൌ ܿଵ,ହ ൌ ܿଵ, ൌ ܿଵ, ൌ ܿଵ.            (21) 

In terms of wavelet series: 
ሻߦைሺݒ ൌ 20 ൈ 2ିସ ଶ⁄ ߶ሺ2ିସߦሻ  ሺെ6ሻ ൈ 2ିସ ଶ⁄ ߰ሺ2ିସߦሻ ൌ 5 ൈ
߶ሺ2ିସߦሻ െ ଷ

ଶ
߰ሺ2ିସߦሻ,                                                   (22)  

ሻߦሺ்ݒ ൌ 14.365 ൈ 2ିସ ଶ⁄ ߶ሺ2ିସߦሻ െ 2.995 ൈ 2ିସ ଶ⁄ ߰ሺ2ିସߦሻ െ
1.059 ൈ 2ିଷ ଶ⁄ ሾ߰ሺ2ିଷߦሻ  ߰ሺ2ିଷ െ 1ሻሿ െ 0.374 ൈ
2ିଶ ଶ⁄ ∑ ߰ଷ

ୀ ሺ2ିଶߦ െ ݇ሻ െ 0.132 ൈ 2ିଵ ଶ⁄ ∑ ߰ሺ2ିଵߦ െ
ୀ

݇ሻ ൌ 3.591 ߶ሺ2ିସߦሻ െ 0.749߰ሺ2ିସߦሻ െ
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0.3744 ∑ ߰ሺ2ିଷߦ െ ݇ሻ െ 0.1872 ∑ ߰ሺ2ିଶߦ െ ݇ሻ െଷ
ୀ

ଵ
ୀ

0.0936 ∑ ߰ሺ2ିଵߦ െ ݇ሻ
ୀ ,                                              (23) 

 
ሻߦூሺݒ ൌ 14.934 ൈ 2ିସ ଶ⁄ ߶ሺ2ିସߦሻ െ 3.166 ൈ 2ିସ ଶ⁄ ߰ሺ2ିସߦሻ െ
0.974 ൈ 2ିଷ ଶ⁄ ∑ ߰ሺ2ିଷ െ ݇ሻଵ

ୀ െ 0.196 ൈ
2ିଶ ଶ⁄ ∑ ߰ଷ

ୀ ሺ2ିଶߦ െ ݇ሻ  0.220 ൈ 2ିଵ ଶ⁄ ∑ ߰ሺ2ିଵߦ െ
ୀ

݇ൌ3.734߶2െ4ߦെ0.796 
߰ሺ2ିସߦሻ െ 0.344 ∑ ߰ሺ2ିଷߦ െ ݇ሻ െ 0.098 ∑ ߰ሺ2ିଶߦ െଷ

ୀ
ଵ
ୀ

݇0.156݇ൌ07߰2െ1ߦെ݇.                                              (24)  

 
Figure 12: Relative Difference between the inverted ܯூ and the 
target ்ܯ  velocity field model (Cerqueira, 2015). 

Conclusions 

In the context of the parameterization, the use of the Haar 
pyramidal algorithm to obtain the coefficients proved to be 
extremely important, as was already expected in theory. 
Another positive factor in the use of this algorithm is that, 
even if it represents a discrete 2ܦ model through the 1ܦ 
model, it is possible to use a considerably small number 
of coefficients in the model representation with the 
application of the coefficient reduction method by 
average.  
          Another factor about the pyramidal algorithm is that 
it allowed to select the ideal values of the indexes ݆ and ݇, 
leaving them in relative values to the samples of seismic 
velocities of the numerical model. 
          As for the aspects of the modeling, the ray tracing 
technique was shown efficient, presenting results of 
coherent traveltimes, considering the dimensions of the 
used model. There was a need to adapt a numerical 
derivative algorithm to make possible to carry out the ray 
tracing and to obtain the traveltimes in the model 
proposed in this work. The execution time of the algorithm 
became highly dependent on the number of samples 
used in the numerical model, increasing reasonably the 
processing time of this data for a well refined mesh.  
          The ray tracing technique used to model 
traveltimes in the target model was also used for the ray 
tracing in the current models, thus allowing the 
comparison of the time vectors obtained in each one of 
these models by means of the relative error between 
them.  
          The global scope algorithm, Metropolis, was 
efficient for the syncline model, considered simple and 
could also be represented through a mathematical 
function. An important factor that allowed the realization 
of these inversions was a small number of coefficients in 
the parameterization of such model.  
          The seismic tomography of velocity fields 
parameterized by Haar wavelet series using the 
Metropolis method, was not very accurate. The use of 

local search methods such as: Newton, Gauss Newton 
and others, may be used in future works in order to 
improve the resolution of inverted models. 
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