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Abstract 

 
Knowing that combining analysis of different kinds of 
geophysical data has the potential to improve model 
resolution, since different observations are sensitive to 
different subsurface features, we examine the 
compatibility of P-wave seismic velocity and electrical 
resistivity from magnetotelluric (MT) observations, using 
fuzzy c-maens method. We propose an approach based 
on fuzzy c-means cluster analysis for the cooperative 
inversion of seismic and MT data sets. Thus, joint 
inversion of these two complementary data sets can be 
used to construct improved models. Results show the 
possibility of a successful application to real data. 

Introduction 

 
In recent years the use and development of algorithms 
and methods for inversion and modeling data set has 
become increasingly popular. The interpretation of 
geophysical models derived by inversion is a highly 
subjective part of any geologic study. The incomplete 
knowledge of the subsurface, the varying spatial 
resolution of the   models, and the non-uniqueness of the 
geophysical inverse problem make it difficult to interpret 
geophysical data directly in terms of geologic structure. 
It is common to use a combination of geophysical 
methods to obtain the distribution of independent physical 
properties over the area of interest in order to discriminate 
between the different possible data sets. Unfortunately, 
field and laboratory investigations show that petrophysical 
relations are often complex, showing non-unique, 
nonlinear, or site-specific dependencies (Shoen, 1998). 
Therefore, the most popular approach for inverting 
disparate data sets is to introduce a link based on 
common structures (Lines, Schultz, & Treitel, 1988; 
Santos, Sultan, Represas, & Sorady, 2006). 
(Gallardo, 2004; Haber & Oldenburg, 1997) showed more 
flexible 2D structural joint inversion approaches that 
minimize data misfits and differences between structures 
in two different geophysical models. Their approaches 
result in two (or more) smoothly varying geophysical 
parameter models, which, in a subsequent step, must be 
simultaneously interpreted. A manual interpretation of 
various collocated models is qualitative in nature because 
the outcome depends on the experience and 
preconceptions of the interpreter. A more quantitative and 
objective post-inversion interpretation of different models 

can be achieved by using statistical techniques such as 
cluster analyses (Paasche, Tronicke, Holliger, Green, & 
Maurer, 2006; Tronicke, Holliger, Barrash, & Knoll, 2004). 
The magnetotelluric (MT) and seismic methods are the 
only geophysical exploration techniques that can yield 
reliable images at depths greater than the km-scale. The 
MT and seismic tomography techniques provide images 

of electric resistivity () and seismic velocity (Vp,Vs), 
respectively, with similar spatial resolution (Bedrosian, 
Unsworth, Egbert, & Thurber, 2004; Jones, 1987; M. 
Unsworth & Bedrosian, 2004) and are often used in 
combination to derive models of the subsurface (Jones, 
1998; Maercklin et al., 2005; Mechie et al., 2004; M. J. 
Unsworth et al., 2005). Both methods have their 
characteristic limitations. MT, for example, has an 
inherent loss of resolution with depth because it is based 
on diffusive fields. Seismic refraction has trouble imaging 
vertical contrasts. By looking at both resistivity and 
velocity at the same time, we can build on the strengths of 
both methods and mitigate their weaknesses. 
Here, we use fuzzy clusters algorithms, the fuzzy c-
means (FCM) algorithm, assigning each data point in the 
multidimensional space to all sunsets with varying 
degrees of membership. Hence, a data point can be a 
member of one cluster but also a partial member of other 
clusters. Thus, fuzzy cluster algorithms provide important 
additional information about quality and internal 
consistency of the performed data classification. 

Methodology  

 
We assume that subsurface can be described by a zonal 
model in which each zone is characterized by a set of 
different geophysical parameter. The method was test on 
two synthetic data example. 
The combined interpretation of different measurement 
types is a basic principle to confine the ambiguity of the 
inverse problems in geophysics. (Paasche & Tronicke, 
2007) proposed a flexible cooperative inversion approach 
based on fuzzy c-means (FCM) cluster analysis and 
conventional single input data set inversion algorithms. 
This method has been successfully applied by his 
creators to various set data, but never tried with MT and 
seismic. 
The FCM is a partitioning cluster algorithm proposed by 
(Dunn, 1973) and improved by  (Bezdek, 1981) to group n 
data points in at-dimensional space into a specified 
number of subsets or clusters c by iteratively minimizing 
the objective function 
 

                                            

(1) 
 
Where uij denotes the degree of membership of data point 
dj to cluster i defined by its center vi. Memberships are 
constrained to be positive and to satisfy 
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                              (2) 

 
With j = 1,...,n. The weighting exponent f, also referred to 
as the fuzzification parameter (Fridgen et al., 2004; Güler 
& Thyne, 2004), controls the degree of “fuzziness” in the 

resulting memberships and lies in the range of 1 < f > . 
For most databases, a selection of  f  between 1.5 and 2 
is regarded as a suitable choice (Hathaway & Bezdek, 
2001). As f approaches unity, FCM cluster analysis 
approximates the crisp k-means algorithm while 
increasing f results in an increased fuzziness of the 
memberships. In equation 1, the Euclidian distance 
between the jth data point and the ith cluster center is 
calculated in a t-dimensional space using 
 

                       (3) 

 
Where the locations of data points dj and cluster centers 
vi are defined by t attributes. After providing the initial 
parameters (number of clusters c, fuzzification parameter 
f, and an initial guess of uij or via), J is minimized with 
respect to uij and vi by iterative alternating optimization 
(Bezdek & Hathaway, 2002). One iteration consists of 
updating the membership values uij 

 

                       (4) 

 
and the cluster centers vi 

 

                           (5) 

 
The order of equations 4 and 5 depends on whether initial 
memberships or center locations are given. The algorithm 
terminates after a predefined number of iterations or if the 
improvement of J falls below a given threshold. 
Based on FCM cluster analysis, (Paasche et al., 2006) 
develop an approach to combine information contained in 
different collocated physical property models to form a 
single zoned multiparameter model. In the following, we 
applied this data-integration approach to a synthetic MT 
and seismic database, which we will use to test the 
performance of the cluster algorithms. 
The database to be integrated comprises two fully 
collocated models of 2D spatial distributions of 
parameters, MT and seismic. Both models are equally 
discretized. They form a 2D data space, in which the 
location of each data point is defined by the two 
parameter values of A and B in each model cell. The data 
points in this 2D space are now subjected to FCM cluster 
analysis. Clustering is repeatedly performed, varying the 
number of clusters c from 2 to 10 and setting the 
fuzzification parameter to  f = 1.75.  
The membership values obtained from FCM cluster 
analysis describe the integrated database in a fuzzy 
sense. However, for most applications there is a need for 
a crisp solution to emanate from the fuzzy membership 

information, which can be achieved by defuzzification of 
the membership information (Lee, 1990; Leekwijck & 
Kerre, 1999). This is always accompanied by a certain 
loss of information. Throughout this study, we defuzzify 
the clustering results by assigning each data point to the 
cluster for which it has the highest degree of membership. 
This is a rather simple defuzzification process referred to 
as “maximum criterion defuzzification” (Lee, 1990). 
 
Synthetic Study 

We consider the inversion of synthetic 2D model shown in 
Figure 1, the MT model comprises a low-resistivity body 

( = 10 m) into an uniform  = 100 m medium (Fig. 
1a). The seismic model comprises a low-speed body (vp = 
2000 m/s) into an uniform vp = 3000 m/s (Fig. 1b) 
medium. We have use a split-spread geometry with 
source and the receivers located at the surface of the 
model. The inversion parameters seismic are the velocity 
and density of each layer, which is divided into four 
blocks. We use the 2D pseudo-spectral method (Kosloff 
and Baysal 1982) to compute seismic traces every. 

            
Figure 1 - Structural model MT (a) and Seismic (b) used 
in the synthetic example. 
 
We now use P-wave velocity model and resistivity model 
shown in Figure 1 as input the FCM algorithm cluster 
analysis. Comparable to the synthetic study we choose c 
= 4 as the optimum number of clusters (Figure 2) to MT 
and (Figure 3) to seismic. 
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Figure 2 -  Structural model MT with low-resistivity body 

( = 10 m) into a single layer  = 100 m(a) and model 
obtained using the FCM  (b) 

 
Figure 3 -  Structural model seismic with low-velocity body 
(vp = 2000 m/s) into a single layer vp = 3000 m/s (a) and 
model obtained using the FCM (b). 

 
Discussion and Conclusion 

 
Figure 2 and 3 show a comparison between observed 
and predicted data, when in  overall the general features 
of both models are similar. We have presented a concept 
of an analysis FCM method that use diverse data to 
constrain a common Earth model. For synthetic models 
we demonstrate that the combination of MT resistivity with 
seismic velocity data allows visualizing local rock 
classifications in a manner that can be directly applied to 
the exploration of deep geophysical reservoirs.  
The method is independent of theoretical relations kinking 
electrical and seismic parameters. It represents an 
advance from the common qualitative interpretation of 
multiple physical property models, and is less susceptible 
to the subjectivity of such a joint interpretation. As shown 
in synthetic examples, our approach is capable of 
“breakinf the degeneracy” of overlapping physical 
parameters, providing structural information not evident in 
the individual models. Analysis fuzzy c-means of 
magnetotelluric and seismic models presents a formal 
method to include diverse data in a common, robuster 
model and help interpretation by reducing the ambiguity 
from a range of models derived from single data sets. 
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