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Abstract

This paper resumes a research for solving nhumerically
a three-dimensional problem of elastic stationary
oscillations, with a particular application to the case
pore pressure in sedimentary rocks. The method
can be used not only for applications in oil and gas
exploration, but also for modeling buried structures
and structural components such as foundations,
tunnels, trenches, cavities, etc. The basis of this
method is the construction of integral equations
kernels as a response to an analogue Delta loading,
or to its derivatives. The finiteness of the kernels
gives the possibility to increase accuracy in many
orders, and to solve the elastic problem in the case
of discontinuity in the normal vector to the contouring
S surface to the goal volume V. As an example, we
show that the variation of the characteristics of the
static stress state under the influence of pore pressure
depends essentially on the contact geometry, and a
little on the type of boundary condition at the contact.

Introduction

This paper concerns the application of the theory of
the linear elastic mixed boundary value problem (MBVP)
of solids aiming at geological basin modeling with
applications to oil and gas exploration, as decribed by
Sibiriakov et al. (2016). We look, among other goals,
for mapping low and high pressure zones that serve as
natural suction pumps, where a reservoir is necessarily
related to a low pressure zone in the subsurface, besides
the necessary geological conditions. We also deal several
aspects of the theory for a typical reservoir model as a
numerical experiment about effective pore pressure, and
the specific application in this paper is the problem of
the effective pressure (pesr) and anomalous high porous
pressure (ppor).

The problem is to calculate the stress-strain distribution in
solids, modeling a sedimentary basin, using maps of vp(x)
and vg(x) velocities, and density p(x).

The real data can be obtained from special surveys
with 3D sensor components, where a large amount of P
wave information is conventional. The S wave velocity
information can also be obtained from VSP technology, and
by petrophysical measurements (Biondi, 2010; Galperin,
1985).

To solve the elastic problem is necessary to know the
boundary geometries, and the distribution of the elastic
parameters in the subsurface.  The present model
considers only isotropic layers, and the model is discretized
in an uniform 3D grid, where the layer cells forming the
geological structure have constant elastic parameters.

Methodology

The construction of the physical problem starts with
the elastodynamic wave propagation equation in the
Cartesian system with (i = 1,2,3;x,y,z), where u(z,x) is the
displacement vector with components «;(z,x), considering
the case of oscillatory temporal condition u; = U;e®':

AU,-+k2U,-+;L#Grad,-DiVU:O, (kzzﬁwz), (1)

where AU; is the Laplace operator on the displacement u;
and U;; A and u are the Lamé linear elastic strain-stress
moduli; p is the body volume density; and  the angular
frequency of stationary oscillations.

The loading vector components, p; = o;,, (traction or
compression), are the pressure (force per unit area)
components expressed by the formula

k=3
pi= Y. Ol = Giny, )
=1

where oy, is the stress tensor, ny is the projection cosine
along the unit normal vector n to the S surface, and o;,
can be calculated by Hooke’s law, and also by the rule of
tensor projections; therefore, the loading is not defined by
the simple normal stress. A complementary expression for
oy is given by

B . aU; JU,
o = ADIVUS; + pu( n | ox ), 3)
aU; % AUy

DivU=06 =

ox; + ox;j + oxy “
In practical terms, if we have a reservoir at depth z
(say, 2000m) we can calculate the loading p; = oyny if
we have the displacement vector to calculate the strain
tensor, and by Hooke’s law calculate the loading p;. We
can also use the effect of the gravity weight to calculate
the loading, because in this case, we are solving for the
nonhomogeneous equation of equilibrium given by

HAU; + (A + p)Grad,DivU = —pgé, ©)

under the condition that p; = 0 at the surface (z = 0). But,
the atmospheric pressure can be assigned to the normal
component, and zeros to the tangential components.

The solution for equation (1) is found in the form of a
convolution with a kernel that satisfies the equation at any
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fixed point x¢ of a closed volume V, that can be arbitrarily
close to the enclosing S surface. The integration is carried
out over the position variable x, and calculated with a
surface element dSy; i.e.,

Ui(xp) = /S My (X0, %) Fi (X)dS, (6)

where M;.(xg,x) is the Green’s tensor (also called Green’s
dyadic) function, F corresponds to the called the potential
vector, or fitting boundary vector, and the displacement
vector U is calculated such that the displacement satisfies
equation (1), and the boundary conditions (Eskola, 1992).

One classical description for the tensor M, in formula (6) is
given by Kupradze (1963) for a 3D full-space (free-space),
as the tensor of the fundamental solution for equation (1)
given by

r 1 2 S S r
Mix(xo,X) = ﬁ (cosﬁk )5ik + = a;?axj [cosﬁkr) _ co%(r}'k )}) . (@)

where §; is the Kronecker delta, and

r=+/(xo—x)+(o—y)+(z0—2) (8)
is the distance between the fixed, xy, and integration,
X, points; y= “—; = ﬁ velocity ratio, and x; are the

projections of the vector r directed from the fixed point x¢ to
the integration point x for the Cartesian coordinate system
(x,y,z). For the static case, i. e., for kr < 1, the full-space
tensor (7) is simplified to the a fundamental solution with
the form

Mi(%0,X) = 5y (A + 122 32 + A4+ 30)8 | 5k, ©)

that has several disadvantages due to non-integrable
singularities, except for the term with the Kronecker &;
function.

The loading Py (xq,x) is obtained with respect to the stress
tensor My, of formula (9), and it is given by

Pi{My}(x0,X) = 24955 + AngDiv, (T

on

+u [ng, Roty, '], (10)
where the essence being to calculate the loading vector at
the fixed point xq, the first term is the directional derivative
(a%o), the middle term includes the divergence of I,
and the last term is the cross product between ny and
Roty, (I'), that results in

where ny is the unit normal vector at a fixed point xy on the
S surface.

The loading tensor (11) gives the possibility to find a
solution for the MBVP of the second kind, where the
loading vector p; is known on the boundary, what is
necessary to find the displacement vector in the volume V.
In this case the problem is reduced to finding a solution
for the system of the 2D integral equations that are not
regular, but singular integral equations; i.e., the kernels are

not integrable, and the integrals should be calculated in the
Principle Value (P.V.) sense, and the last term in the loading
tensor (11) causes this mentioned singularity. In practice,
the use of such type of kernels are the cause for loosing
accuracy.

Now we discuss the shortcomings of the fundamental
solutions. If the loading vector p; is known on the S surface,
it is possible to calculate the correspondent potential
vector, F, (k= 1,2,3), by solving the system of integral
equations of the Fredholm type of the second kind given in
the form

pilxo) = Fixo) — 5= [ Pula RS, (12)

then as a result it becomes easier to calculate the
displacement vector U by using the integral (6). The
quantity p; is given by formula (2), and Py, by formula (11).

The displacement means the amplitude responses for the
half-space, under the condition that the surface normal 3-
loading, p, = 6(S), is given by

1 o0
5(8)=—5- /0 koo (kyre)dr, (13)

where k&, is the mnemonic integration variable (k is the
effective spatial frequency corresponding to the S waves).
Also, all the dimensions of the involved quantities, 5(S),
pi,» My, Py, Ty, are compensated by the dimension of the
potential vector F.

The finite analogue of Delta function can be written as

1 k=N
81 (8)=—5_ /k . ke Jo (m /K2 +2k2) dk;. (14)

The limits of integration is now from 0 to the inverse of the
sampling interval, i. e., N ~ h~!. Formally, the finiteness
of the kernel causes the necessity to solve the Fredholm
equation of the first kind (loosing conditioning) for finding
the potential vector, and also loosing completeness.

On the contact skeleton-fluid the normal component of
the loading vector is equal to the fluid pressure, and the
tangential components of the loading vector are equal to
zero (pn = po, pr1 = pr2 = 0). On the interface between
two solid bodies, there are two main types of boundary
conditions, rigid and slip.

The rigid contact means that there are no net forces
on the interface and, despite of the interface existence,
the displacement vector is continuous, and the vector
summation of the loading vector is null. Taking into account
that the external normal vector changes sign, and the
tangential vectors coincide on the upper and lower layers,
it means that:

1. U =-U,, U}=U;, ULt=Ug,,
2. py=pn> P;:‘—l = =P sz =P

“w, »

The symbols “+” and “” stand for the upper and lower
layers with respect to the S surface.

The slip contact (that can have a modification to include
a friction coefficient) means that the tangential forces are
zero, and only the normal component of the displacement
vector is continuous, that is:
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1. UF=-U,,
2. pi=pis Pu=-pPu=0 Pp=-py=0

It should be clear enough that the mixed type of boundary
conditions (with rigid and slip conditions) are the most
important ones for geophysics.

The Static MBVP

The new displacement tensor components give results for
the static case (k — 0) for the half-space in the form:

exp(—|xilkr)

anu(l— ) (1+k|xi[(1— %)) dk.,  (15)

"N
Mrm:/o JO(krr‘r)

exp(—v Jk,)

N
Mnr:/o ffé(krrr)4ﬂy(17y2) (=P + ki [(1 = 1)) dks,  (16)

M’":'/ON—J(/)(](’”)%(Y2+kr|xl‘(1—’}’2))dk,4, (17)
N
Mrr = /o (200 (kere) (1= ) +JG () (1= 272)

e [(1 = P2 ()] SR

(18)

N
Mgy = /0 [Jo(kere) — I (krre ) (1 = 297)

—k[x1|(1 =) (o (krre) + TG (kere))] e:ﬁﬂ@‘?‘ykz'; dk,.

(19)

Solving the MBVP, the boundary conditions should be
satisfied. In the first step (and in the main ones) of
computing the potential vector, the fixed point, xq, is on the
surface (on the volume boundary). If the potential vector,
F, is already known, for computing the other parameters
(strains or stress), then the fixed point is inside the volume
V. It may be difficult to digest that inside the volume
V of a homogeneous medium there are no normal and
tangential vector components, and in this case (i. e., for the
calculation of displacements or strains inside the volume)
these components have the meaning of a virtual (not real)
surface inside the volume.

Effective Pressure, Rigid and Slip Contacts

Often, the effective properties, pes, Of porous granular
media does not depend on the confining (external)
pressure, peonf, but on the difference between confining
and porous, po = ppor, (fluid) pressures, as pest = Peont — Po-

The opinion that porous pressure opposes the
approximation of contacts is not correct, because
pressure is a scalar quantity, and only surface forces
can approximate or separate contacts. Sometimes it
is necessary to use a dimensionless factor of unknown
nature for peg.

Now, let's consider the physics for a minimum
representative volume which consists of grains with
flat contacts (called here platforms) as shown in figure 1.
The problem is that porous pressure (pg) in granular media
can cause two opposite processes. As a first case, it is
to increase the distances between grain centers, and this
effect is significant around the edges (indicated in the right
side of figure 1). As a second case, it is to decrease the
distance between grain centers (indicated in the left side of
figure 1). The question that we raise here is, which effect
is stronger and prevails?

Figure 1: Geometry of grains with a contact surface, called
platform by being flat, and the force distribution around the
surface shown by arrows.

In the literal sense, granular media is not continuous.
Of course, this means that we can have some average
effective properties, but it is impossible to understand
the dependence of the effective properties on external
parameters in the framework of continuous medium by
using “average” forces in every point.

In order to analyze the dependence of the effective
pressure (pef) On porous pressure (pg), and on the
structure of the porous state, it is necessary to solve the
static elastic problem of the mixed boundary type. The
boundary conditions described for the part of the grain
(spherical) that is in contact with fluid is obvious; i.e., the
normal component of the loading vector is equal to the
porous pressure, and the tangential components are zero.

As for the boundary conditions for contact platforms,
between grains, there are two variants: (1st) the rigid
contact (platforms are welded), where the displacement
vector is null; (2nd) slip contact, where the normal
component of the displacement vector and tangential
components of the loading vector are null. So, the effective
pressure (pef) is composed by the confining pressure,
and by the average normal loading vector on the contact
platforms.

Numerical Example

Now, it is interesting to solve this problem for a grain with
6 contact surfaces, as described below. This experiment
gives an opportunity to test not only the new tensor
displacement formulas (15-19), but also to understand the
dependence of the effective properties of granular media
on the contact area (platforms), and on the type of the
boundary conditions.

The S surface corresponds to a sphere of unit radius with
six contact platforms, as shown in figure 2. The size of
the platform is determined by the parameter kg, that is
the distance from the sphere center to the center of the
contact platform. The surface parametric equation for the
x-coordinate is, for example, given by

if sin@ cos @ > hy, then x=hy,
else if sinBcos@ < —hy, then x=—h, (20)
else x =sin 6 cos ¢.

Similar relations hold for the y and z coordinates. Such
surface assigning is more convenient than assigning 7
surfaces (6 flat platforms and 1 that corresponds to the
remaining of the sphere in contact with the fluid). The
platform contours are not circumferences, instead they
are close to a polygon (see figure 3). To construct the
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Figure 2: The clipped ball model with six flat contact
areas (platforms) represented in Cartesian coordinates
(x,,2), and to be submitted to stress loading and boundary
conditions.

surface is necessary to run over the parameter 6 from 0
to « rd (radians as on spherical coordinates), and over the
parameter ¢ from 0 to 27z rd.

Figure 3 is the Indicator surface presented to clarify the
next figures, the role of the parameters 6 and ¢, and
hyp = 0.8. The indicator parameter is given by I =1 for the
platform (solid-solid contact), and by 7 = 0 for the remaining
part of the sphere (solid-fluid contact).

The problem is reduced to the elastic mixed type boundary
condition to calculate the average normal component of
the loading vector on the platforms (solid-solid contact)
for different values of A (i.e., different areas of contact),
and for different boundary condition (solid-solid, either
rigid or slip conditions). The average normal component
corresponds to a second summation to obtain the effective
pressure (pegf)-

The Lamé parameters and the porous pressure were set
equal to 1; therefore, the result is proportional to py. The
grid was defined with 59 mesh nodes for the parameter 6,
and 60 for the parameter ¢ (i.e., the intervals were hg = %
and hy = %). The hy parameter had values set to: 0.8,
0.85, 0.9 and 0.95. Also, the numerically calculation was
performed for the two mentioned types of conditions (rigid
and slip boundaries). The size of the final matrix (for the
calculation of the potential vector by matrix inversion) was
10620 x 10620. This matrix includes either the computation
for

pils0) = = [ Palo. 0 (x)dSx.
or for |
Ui(xg) = 7 /Mik(XO»X)Fk(X)dSm
7 Js

and the selection depends on the boundary conditions. If
the potential vector F is known, then the loading vector
given by

pilxo) = — /S Py(X0, X)Fi (X)dS,

can be calculated. The average of the normal component
of the loading vector is calculated by integration over the
contact platforms by

Pulxo) = 5 [ pa(0.0)1(6.9)d5. &)

where S is the total surface area.

Figure 3 stands as another representation of the clipped
ball model associated with the S surface for analysis of
discontinuities. In this case, it is represented in the 6 and ¢
coordinates by the I-indicator, that means: I = 1 for the flat
contact area, and I = 0 for the spherical area. The surface
parameter height is Ay = 0.8. The boundary conditions for
both /-cases are as follows:

1. if the point is on the spherical side of figure 2, and
on the area for I = 0 of figure 3, then the normal
component of the loading vector, (p,, equation (2),
is equal to the pore pressure (p, = po), and the
tangential components are zero (p; = 0).

2. if the point is on the flat side of figure 2, and on the
area for I =1 of figure 3, then the normal component
of the loading vector, (p,, equation (2), is equal zero
(pn = 0), and either the tangential components of the
displacement vector are zero (rigid contact condition,
U; = 0), or the tangential components of the loading
vector (pr, equation (2) are zero (for slip contact
condition, p; =0).

Figure 3: Discontinuity surface images of the clipped ball
model with six flat areas of figure 2 in the 6 and ¢
cylindrical coordinates using the I-indicator function, with
the conditions: hy = 0.8; I =1 in the flat contact area;
and 7 = 0 on the boundary part with the presence of fluid.
The amplitude scale shows 1 and 0, and the six polygonal
shapes of the flat contact area. On the two lateral parts
I =1, and have an extended flat form.

The singularity of the kernels (despite of the singularity
type) causes in all cases the necessity for calculating
improper integrals. This means that it is necessary to add
to the numerical summation an additional term based on
an analytical calculation (an integral on a small area that
includes a point of function singularity). But, the accuracy
of such additional term is low enough (h2); therefore, it
makes no sense using high order integration formulas; that
means, stay with Simpson quadrature.

The finite kernels give the possibility to answer interesting
questions about the dependence of the accuracy of the
elastic problem solution, and about the integration formula
for accuracy estimation. The question is: Is it justifiable to
use high order formulas for the integral calculation? The
answer is based on the found results that showed to be
very interesting and surprising.

Different integral formulas give different potential vectors,
but the loading vectors (final result of the elastic problem
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solution) proved to be identical, and the maximum
difference was in the order of 10~°. The question now
is: What is the reason for this type of result? The
answer is that in this case the integral is approximated
by a finite summation, also the kernel satisfies the
equation of equilibrium exactly, and the dependence
between displacement and loading vectors are calculated
analytically, i.e., it is also exact. For example, if in the
formula

1
pilso) = =5 [ Pulo,0R(x)as:

we denote Fi(x)dSy as a new Fi(x), it means that the
accuracy of the U;(p;) does not depend on the order of the
integration formula (of course, if the displacement vector
is calculated by the same integration formula); therefore, it
means that there is no need to calculate integrals.

It is possible from the beginning to use summations, e.g.,
instead of integrals, use a form like

Ui(xo) ZMzk x0,%) Fie(x),

where the summation is over the surface integration points.
The loading vector depends on the displacement vector
analytically; i.e.,

pilxo) = ZPlk x0,%) Fie(x), (22)

where Py (xp,x) is the loading vector under the condition
that Mj; is the displacement tensor.

So, by changing the classical Delta function by a finite
analogue for the numerical methods gives the possibility
to solve the elastic problems with mixed type boundary
conditions (not only the static, the dynamic also), and to
use finite summation for the solution instead of integrals.

Results

Figure 4 shows only part of the huge matrix to calculate the
potential vector for the clipped ball calculated by the linear
system given by the formulas (15-19). The problem is of
the mixed type, and this figure is a part of the matrix of
the system, that contains both M;, and P, and projections,
where the mentioned part contains P, with the large values,
and M;;, with the smaller values. The model parameter was
set as hy = 0.85, boundary conditions of rigid contact, and
the result of the matrix inversion was stable and reliable.

Figure 5 shows the normal component of the potential
vector (for the same conditions as in figure 4). The small
absolute values of the potential vector is caused by using
the formulas

Ui(xo) = Y Mi(x0,X)Fi(x), (23)
S
instead of,

Ulsn) = 5 [ Mo RS, (24)

that means the absence of the multiplication by the surface
element dSx, that would be compensated by multiplying by
the large values of M.

Figure 6 shows the normal component of the loading
vector, p,, under the same conditions as given in figures

4 and 5, as a result of the convolution of the potential
vector, F(x), with the modified stress tensor, Py (xg,x), of
the fundamental loading; i. e.,

pi(Xo) = — Y Py (X0, X) Fi(x). (25)
5

It is visible that the loading depends slightly on the
parameter ¢, and this means that the contacts are
interacting with each other. With a further decrease in the
size of contacts (i. e., by increasing the parameter i),
the loading (on the upper and lower platforms) ceases to
depend on the ¢ coordinate.

n

Matrix amplitude

o

©
o
o

800
750

Y 700 700

Figure 4: Fragment of the huge matrix system (15-19)
that contains Py (large values) and My, (small values) for
calculating the potential vector F,(6,¢), for Ay = 0.85 and
rigid contact.

\\\\\‘\‘“““' .

S

‘ “ \\\“\“

oot
“““\‘
B

Figure 5: Dependence of the normal component of the
potential vector, F,, for reliability and stability. This result
says that it is a pleasant fact that the part of the surface
bordered by the fluid, where the normal loading was well
defined, did not change after the numerical calculations for
the potential vector F,. The values were: hg = 0.85; and the
parameters 6 and ¢: 0 < 6 <« (left axis), 0 < ¢ < 27 (right
axis).

In all cases, the normal component of the displacement
vector was defined on the contact solid-fluid (on a part of
the whole surface). Also, the loading vector was computed
by using a formula of the type p; = — ¥ Py (x0,x)Fy (x) (for the
whole surface, including the part where the loading vector,
pi, was defined). From one point of view, the calculated
loading vector on the contact fluid-solid was coincident with
the prescribed conditions, and almost absolutely.
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Figure 6: The normal component of the loading vector p,
for hy = 0.85, as a function of the 0 < 6 < & (left axis)
and 0 < ¢ < 2m (right axis) parameters. The borders
with fluid have loading p; equal to 1. On the platform
boundaries, the normal loading and maximum modulus
change rapidly. This result comes from a convolution with
a modified potential stress tensor given by formula (25).

Results of the dependence of the average normal
component of the loading vector, p,, on the porous
pressure and on the parameter i, (under the condition that
the porous pressure is unit) is presented in Table 1.

ho rigid contact, p,, | slip contact, p,
0.80 -0.018 -0.020
0.85 -0.031 -0.039
0.90 -0.075 -0.103
0.95 -0.342 -0.416

Table 1: Dependence of the average normal loading, p,,
(as effective pressure, pegf) on the hy parameters, and on
the type of boundary contact, with the condition that the
pore pressure is equal to 1. From the table, the effective
pressure is proportional to the pore pressure, as can be
seen from the increasing negative values on both right
columns with respect to the left column.

The main difference, from the mechanical point of view,
between the present method and the one by Sibiryakov and
Sibiryakov (2010), is the interaction between the platforms
of the grain contacts, where in the axial symmetric case,
there was only two platforms, no dependence on the ¢
parameter, and the average normal loading was positive
for the case of large enough platforms (it corresponds to
reinforcement of the granular medium). But, for the present
case of six platforms it is proved that the reinforcement of
the granular medium to be impossible.

The common fact is that, when the area of the contact is
large enough, the dependence of effective pressure (pes)
on the porous pressure (ppor) is not significant. The smaller
the grain contact area, the stronger the dependence of the
effective pressure on the porous pressure, and on the type
of the boundary conditions (rigid or slip). In the case of
the slip contact the influence of the porous pressure on the
effective pressure is larger.

The most probable areas for destruction by increasing
the porous pressure are for the small contact platforms.

The process of destruction will be irreversible, because
the normal loading at the edge is maximum, and the
beginning of rupture means decreasing of the contact area.
The mechanical feedback process is that by decreasing
the contact area causes the increasing of the normal
component of the loading vector on the edge of the contact
platform.

Conclusions

The new method applied was developed and numerically
tested for the numerical solution of the linear elastic
MBVPs. This method can be used to solve static and
stationary oscillation problems.

The finite analogue for the dipole potential showed to be
reliable and valid method to solve MBVPs.

The advantage of this method is the finiteness and the
smoothness of the integral kernels, that made it possible
to solve the elastic problem on surfaces, where the normal
vector may have points of discontinuity.

The method showed not to depend on the accuracy of
the numerical integration formula. Moreover, the method
makes it possible to eliminate the use of integral equations
by replacing the integrals by finite summations.

The effective pressure (pesf) should have the meaning
of an average normal loading, pest = p, for all forms of
contacts under the influence of pore pressure, instead of
a subtraction (peft = pcon — Ppor)- In the present conceptual
case, the effective pressure (pe) is proportional to the pore
pressure (ppor), it has opposite sign, but the proportionality
depends substantially on the contact area. If the contact
area is sufficiently large, then for the rigid and for the
slip contact type, the proportionality is small enough, but
by reducing the contact area the proportionality becomes
large enough, and the effective pressure increases.
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