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Abstract

We discuss and compare two methodologies to
estimated the relative acoustic impedance (RAI). One
is the coloured inversion, and the other is a linearized
relation between the seismic trace and the impedance,
that provides a linear system to be solved for the
RAI. Additionally, we investigate the performance of
one direct technique and two iterative methods applied
to resolving the linear system problem to estimate
the RAI seismic section. The numerical experiments
demonstrate that the coloured inversion can produce
good RAI estimation and that the linear system
approach can provide similar results. Tests with real
data indicate that the linear system approach can
provide a slightly better impedance section than the
coloured inversion if the numerical methods applied
to solve the linear system problem are optimally
parametrized at the well-log position.

Introduction

Attributes are commonly employed to assist in the
seismic data interpretation. = One useful attribute is
the acoustic impedance (AI) obtained from the seismic
amplitudes inversion. The Al seismic sections facilitate
the stratigraphic analysis because it is a rock property
(Latimer et al., 2000). In some cases, the relative
acoustic impedance (RAI) is enough to help in the
thin layer reservoir characterization (Brown et al., |2008).
The coloured inversion methodology (Lancaster and
Whitcombel 2000) is a computationally cheap and quite
robust approach to estimate the RAI from the seismic
data. This technique makes use of an operator derived
at the well-log position to transform/invert the data to RAI.
Hampson et al.| (2005), proposed a simultaneous post-
stack seismic amplitude inversion to absolute Al, in which
a spike deconvolution and the seismic trace integration are
performed in one step. Thus, given an initial low-frequency
model, the absolute Al is estimated using a conjugate
gradient algorithm to solve a linear relation between the
seismic and the impedances logarithm. In this work, we
adapt the Hampson et al.| (2005) methodology to make
it suitable for the RAI estimation. Different techniques to
solve the linear system obtained are tested, and the results
compared with the RAI produced by the coloured inversion.
Tests on real seismic data indicate that the linear system

approach can provide an impedance section with better
event continuity than the coloured inverted data.

Theory

The coloured inversion methodology requires at least one
well-log tied to the seismic data to build an operator in
the frequency domain. The operator magnitude spectra
is defined by the division between the average of the
well-log RAI spectra and the average seismic spectra.
Assuming the wavelet embedded in the seismic data is
zero phase, the operator phase is set to —90°(Lancaster
and Whitcombe), [2000). Finally, the derived operator is
convolved with each seismic trace in the time-domain.
Hampson et al.| (2005) proposed a post-stack inversion
to Al that makes use of the convolutional model and the
assumption of small reflectivity for the zero incidence angle
P-wave reflection coefficient. Then with an initial guess for
the impedance model, the conjugate gradient together with
the linear relation between the seismic and the impedance
logarithm can be used to estimate the absolute impedance.
Now, we look in more detail the Hampson et al.| (2005)
approach. The zero incidence angle P-wave reflection
coefficient is given by

Al — Al
= (1)
Al +AL
where R; is the reflection coefficient from the boundary
between the rock layers with impedance Aly; and AI.
Rearranging equation[T]and taking the natural logarithm

InAli :lnAIi+1n(l+R,-)—ln(l—Ri). (2)

Knowing that In(1 +x) = x for x = 0, it follows that
1
R~ E [lnA]i+1 —lnAI,-] 5 (3)

that is the small reflectivity equation. In practice, it works
well for |R| < 0.3 (Oldenburg et al., [1983). Equation [3|was
obtained by linearizing the reflection coefficient logarithm.
We propose to include the expansion of the impedance
logarithms in a Taylor series around one and retaining only
the first order term. In order to approximately satisfy this
Taylor series assumption, the impedance is normalized
with a reference value Al such as the impedance profile
maximum absolute value. Considering that our objective is
to estimate the RAI, the proposed normalization is not an
issue since we are not concerned with the real impedance
magnitude, but the primary information that we want to
extract is the RAI increase or decrease in a neighborhood.
Therefore, considering RAI/RAI,; ~ 1 and knowing that
In(z) =~ z— 1 for z~ 1, we obtain
~ 1

Ri~ ——— |RAL; 11 — RAI; 4
i ZRAI,ef [RAIiyy il 4)
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Figure 1: Example of absolute acoustic impedance
and relative acoustic impedance. The RAI is obtained
by subtracting the trend from the absolute AI. The
measurements initially in depth were converted to two-
way traveltime. Data extracted from the Marmousi2 model
(Martin et al., |2006).

where R; is the frequency band-limited reflection coefficient
obtained from the RAI. Figure [f]illustrates the relationship
between the absolute Al and the RAI. The absolute Al
in each position is the exact rock property that would
be obtained from the product between the compressional
velocity and the density of a rock sample, which is always
a positive quantity. On the other hand, the RAI mainly
provides information about the increase or decrease of
the impedance and it can be negative. Note that the
RAI is obtained by subtracting the trend from the absolute
Al. In the frequency domain, the RAI is the absolute Al
without the low-frequency content. Moreover, if the RAI
is estimated from the seismic data, the high-frequency
content is also missing due to the seismic band-limitation.
Having said that, we claim that although equation 4] may be
a less precise approximation than equation [3]to the exact
zero incidence reflection coefficient, it is more suitable to
deal with the RAI because it does not make use of the
logarithm function, this way, preventing problems with zeros
and negative values. The equation [4| can be written in
matrix form using the difference operator

-1 1 0
0 -1 1
D= (5)
then
m -1 1 0 RAIL /RAL,s
I 1o -1 1 RAL /RAL,f
~— 6
3 1 EEE 5 ©
™ . . . .| [RAIN/RAL,f
The convolutional model is defined by
S=Wwxr+n, (7)

where s is the seismic signal, w is the wavelet embedded
in the seismic trace, * denotes the convolution operation,
r is the reflection coefficient sequence, and n is additive

noise. Rewriting the convolutional model in matrix form, for
instance discarding the noise component, and substituting
equation [6]

s= lWDx, (8)

2

where W is a Toeplitz matrix build with the wavelet and
the vector x is the normalized RAI profile. Equation [g] is
a linear relationship between the seismic signal s and the
impedances x. Defining

1
A= WD, 9)

equation [f]can be rewritten as
Ax=s. (10)

In practice, while solving the linear system [10] it is being
performed a spike deconvolution and a seismic trace
integration simultaneously. As a consequence, the matrix
A is ill-conditioned as any seismic deconvolution problem
involving a frequency band-limited wavelet. When the
matrix A is nonsingular, direct methods as Gaussian
Elimination or QR decomposition may be used to solve
the linear system [T0] Furthermore, depending on the
special properties of the matrix A, other efficient methods
like Cholesky decomposition (when the matrix is positive
definite) could be used. However, when the matrix A is
singular, and this how we will handle our problem, the
linear system [10]does not have a unique solution. When it
happens, despite the case where the linear system doesn’t
have solutions (which is not the case of our particular
problem), the linear system|10| has infinite solutions. If x is
a solution of the linear system[10} then x is also a solution
of the normal system

ATAx = AT, (11)

where AT is the transpose of A. A vector x is the solution of
the linear system if, and only if, x is also the solution of
the least square problem (Trefethen and Bau lll,{1997)

|ls — Ax|| = min ||s — Aw||5. (12)
weR”

If rank(A) < n, then the solution of the least square problem
is not unique (Watkins}, [2004). In other words, there are
many x for which ||s — Ax||, is minimized. The minimum-
norm solution of the problem[12] consequently, the solution
of the system|11|is given by x = A's, where AT denotes the
pseudo-inverse of the matrix A (Golub and Kahan, |1965).
Consider the SVD decomposition of the matrix A € R"*",
with rank(A) =r <n:

A=UxvT, (13)

where U € R™" and V € R*™" are orthogonal matrices
and o € R™" is a diagonal matrix such that diag(X) =
{01,0,...,0:,0,...}, where o;, i =1,...,r, denotes the
singular values of A, with 6y >0, > ... >0, >0. The
pseudo-inverse of A might be written in terms of its SVD
decomposition:

AT =vziuT, (14)

where the diagonal matrix ¥ € R™" is the pseudo-
inverse of T, with diagonal elements given by diag(X) =
{o;',0,',...,0;71,0,...} (Golub and Van Loan, 2012).
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Theoretically, there is a remarkable difference between
singular and nonsingular matrices. In other words, in
the absence of roundoff errors during calculations, the
singular value decomposition reveals the rank of the
matrix. However, the presence of numerical errors turns
the problem of determining the rank of a matrix harder,
as might appears small singular values that theoretically
would be zero (Watkins| 2004). Then, roughly speaking,
it's necessary to consider a tolerance parameter ¢ that
plays the following role: singular values o; lesser than &
are not considered, as they would be zero in the absence
of numerical errors. So ordering the singular values of
Asuchthatoy >0, >...>0,>¢>0,41 > ..., then the
rank of A is assumed to be r. The application of the
SVD decomposition to solve linear systems is considered
a direct method and, in the absence of roundoff errors,
provides the exact minimum-norm solution of the problem
[[2 Nevertheless, when large matrices are considered, the
SVD approach might become computationally expensive.
Furthermore, when the matrix is also sparse, the use
of iterative methods becomes more efficient (Greenbaum,,
1997). Although the application of iterative methods in
our particular case does not provide the exact minimum-
norm solution of the problem they can generate an
approximate solution of the system

Methodology

Our objective is to compare different methods to estimate
the RAI from the seismic data. One approach will be via
the coloured inversion and the second will be via solving
the linear system In this paper, we consider the SVD
that is a direct method and two different iterative methods,
the traditional conjugate-gradient and the randomized
Kaczmarz method. The pseudo-inverse of the matrix A,
calculated with the SVD, will be obtained by discarding
singular values smaller than a threshold. The threshold
will be defined by testing a range of cutoff parameters
and verifying which pseudo-inverse applied to the seismic
trace nearest to the tied well-log data provides the highest
correlation between the estimated RAI and the impedance
from the well-log. A similar methodology will be applied to
the iterative methods, but the parameter to be defined will
the number of iterations. Additionally, the initial model will
be the —90° rotated seismic trace, that can be understood
as a simplified version of the coloured inverted data. For
completeness, the iterative methods that will be used are
discussed in more detail. The conjugate-gradient method
has been already proposed by (Hampson et al., [2005)
to solve the problem under investigation. Thus, it is
going to be included in our tests. The conjugate-gradient
method, which is a particular example of Krilov subspace
method, is a variation on the steepest descent method
(Greenbaum, [1997). However, the conjugate-gradient
uses information from the last iteration, providing better
performance. The conjugate-gradient works with positive
definite matrices, expending less effort to generate the
solution in comparison with the Cholesky decomposition
(Watkins|, [2004). Here, we use the conjugate gradient for
least squares (CGLS) as discussed in|Scales| (1987). The
Kaczmarz’'s method (Natterer, [2001), also known under
the name Algebraic Reconstruction Technique (ART),
commonly used in geophysical tomography, performs
operations only in the rows of the system, which turns this
method very useful if the matrix is sparse. Briefly, the

classical scheme of Kaczmarz’'s method works through all
the rows of A in a cyclic manner, projecting in each step
the last iterate orthogonally onto the solution hyperplane
generated by the i-th row of the system, that is: aiTX =
si, Where a; denotes the i-th row of A. It has been
showed, however, that the rate of convergence of the
Kaczmarz’'s method is improved when the algorithm works
through the rows of A in a random manner, rather than
sequentially (Natterer, 2001; [Herman and Meyer, |1993).
For this reason, in this paper, we are going to use the
randomized Kaczmarz’'s method. Given an initial point sy,
the randomized Kaczmarz’s method performs the following
calculations:

s,-i—arT(l.)xk
X1 = Xk + (Ti)ar(i% (15)
“r(i)“r(i)
where r(i) is chosen from the set {1, 2, . . . , n} at

random, with probability proportional to the Euclidian norm
of a,;;. The second part on the right of equation is
the orthogonal projection mentioned above.Note that the
algorithm does not need to know the whole system, but
only a small random part of it. Then, when the matrix is
very sparse and well-posed, the computations in equation
are cheap, and the method may outperform most of the
known iterative methods (Strohmer and Vershynin} 2009).

Application to Marmousi model

The Marmousi2 model (Martin et al., 2006) was used
to assess each methodology to estimate the RAIL
The exact absolute Al model and the correspondent
reflection coefficient data, originally on depth domain, were
transformed to the two-way travel time. The trend from
the AT model was removed to obtain its RAI version. The
calculations were made at the Marmousi2 trace position
751. The inversion techniques were evaluated using a
seismic trace calculated by convolving the exact reflectivity
series with a Ricker wavelet at 25-Hz peak frequency.
Thus, the seismic data to be inverted contained only
primary reflections and the biggest obstacle in the process
to recover the exact RAI, in theory, should be only the
seismic frequency band-limitation. The coloured inversion
produced a RAI close to the exact model (Figure [2p). The
magnitudes from the estimated RAI did not match the exact
model, probably, due to the seismic data band-limitation. In
general, the RAI estimated via the linear system solution
performed, Figures [2b{2d, slightly better than the coloured
inversion, Figure[Za. The correlation coefficients in TableT]
confirm that solving the linear system for the RAI was a
little bit more precise than the coloured inversion. It is
worth mentioning that the SVD result shown here was
obtained by using a cutoff singular value of 0.004 and the
testing range was from 107 to 1. The CGLS algorithm
was parametrized with 150 iterations and the Kaczmarz
with 10° line operations. The linear system solved had
500 lines, so in comparison with the CGLS technique, the
Kaczmarz algorithm performed about 2000 iterations. The
Kaczmarz also expended more time to solve the system
than the CGLS algorithm, given the number of iterations
necessary to achieve nearly the same correlation with the
well-log for the seismic trace inverted to RAI near the well-
log position. The SVD cutoff singular value and the iterative
methods number of iterations were chosen as discussed in
the Methodology section.
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Figure 2: RAI from the Marmousi2 model at trace number 751. In red the exact RAI model and blue the estimated impedance.
[(3)] Coloured inverted data. Results from linear system solution: [(b)] SVD; [(c)] CGLS with the initial solution in green; [(d)]

Kaczmarz with the initial solution in green.
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Figure 3: Seismic data and the synthetic seismic trace

calculated by the convolution between the reflectivity

estimated from the tied well-log and a 25-Hz Ricker
wavelet.

Application to real data

We tested the inversion methodologies on a real data
composed of a sonic and density log from the Penobscot
L-30 well and a stacked seismic section offshore from
Nova Scotia, Canada (Bianco, 2014). We considered
only the time window around valid well-log values. The
seismic data frequency bandwidth is similar to the 25
Hz Ricker wavelet. Figure [3] exhibits the seismic data
and synthetic trace calculated from the tied well-log.
Figure E| shows the inversion results, where the red
arrows indicate the positions where the well-log RAI is in
agreement with the inverted seismic data. The coloured
inversion provided an interesting RAI section, which it
is in agreement with the well-log in various positions
(Figure [p). Comparing the seismic section, Figure
and the RAI section, Figure [p, it is clear that the
inversion filled the space between neighbor reflections
all over the data. In other words, the information was
transformed from a boundary measurement to an interval
representation. The SVD technique applied to solve the
linear system approach performed well. Although it was
applied trace by trace, the estimated RAI section presented
events with higher continuity, Figure E]o than the coloured
inversion (Figure [@p). The black arrows in Figure [4]
indicate the positions where the events continuity was
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Figure 4: Real data and the tied well-log transformed to RAI. The red arrows indicate the positions where the well-log RAI is in
agreement with the inverted seismic data. (a) Coloured inversion. Followed by the linear system problem solved with: (b) SVD;
(c) Seismic —90° rotated + CGLS; (d) Seismic —90° rotated + Kaczmarz.

improved compared to the coloured inversion (Figure [4p).
A drawback of the SVD approach was that it favored the
negative RAI values over the positive ones in the data
region from 1.0 to 1.8 seconds, (Figure [dp), while the
coloured inversion produced an impedance section more
balanced between the positive and negatives values. The
CGLS and Kaczmarz techniques provided nearly the same
RAI sections (Figures [ and [db). These results showed
better layer continuity in some positions compared to the
coloured inversion. But, the positive RAI values were
slightly reduced, concerning the coloured inverted data, in
the time window from 1.0 to 1.8 seconds. This observation
is similar to the one made with the SVD results, but

the CGLS and Kaczmarz techniques did not enhance the
negative RAI values as the SVD method. Moreover, the
CGLS and Kaczmarz lateral continuity improvement are
nearly the same as the one produce by the SVD solution.
It is worth noting that the CGLS result was obtained with
20 iterations and the Kaczmarz number of row operations
divided by the solved system number of lines was about
65 iterations. Furthermore, the Kaczmarz expended more
time than the CGLS to solve the linear system to achieve
approximately the same correlation coefficient with the
well-log data. Table [1] exhibits the correlation coefficient
between the estimated RAI near the well-log correlated
and the well-log measurement. For the techniques used to
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Table 1: Correlation of the inverted seismic data to RAI with
the exact relative impedance for each inversion approach.
The left column displays the results from the Marmousi2
model and the right column the results from the tests with
real data at the well-log position.

Method Correlation
Marmousi Real data
Coloured inversion 0.80 0.16
SVD 0.87 0.20
CGLS 0.89 0.15
Kaczmarz 0.86 0.15

solve the linear system, these are the optimal correlation
coefficients. The SVD solution to the linear system
approach obtained the highest correlation and the other
approaches achieved approximately the same correlation
coefficient. This result is in agreement with the visual
inspection of the results exhibited in Figure |4, where the
SVD result seems to be a little bit better than the others.

Discussion

The coloured inversion produced a good RAI section in
the tests with numerical and real data. The numerical
tests with the linear system approach produced results
closer to the exact response than the coloured inversion,
independently of the numerical method chosen to solve
the problem. But analyzing closer the iterative methods,
the Kaczmarz expended more time to solve the linear
system than the CGLS algorithm. In the tests with real
data, the SVD technique parametrized with an optimal
cutoff singular value determined at the well-log position
produced a RAI with higher correlation coefficient to the
well-log measurement than the coloured inversion and
the iterative methods. In the real data set used here,
the SVD favored the negative RAI values in some parts
of the inverted seismic data while the coloured inversion
produced a RAI section with more balanced positive and
negative RAI values. Again, the Kaczmarz was took more
time than the CGLS technique to solve the linear system.

Conclusions

We compared two methodologies to estimate the relative
acoustic impedance. One approach was the coloured
inversion that uses well-log information to derive an
operator to transform the seismic data to the RAI. The
second was by using a linear relation between the seismic
data and the RAI. Then we investigated one direct method
and two iterative methods to solve the linear system
obtained. The methodology discussed, demonstrated that
well-log information can be used to calibrate the SVD
and iterative methods like the CGLS and the Kaczmarz
to produce results similar to the coloured inversion. But
we highlight, that between the iterative schemes, the
CGLS technique expended less time than the Kaczmarz
to achieve the same accuracy level of the inverted seismic
data at the well-log position. The convergence and
efficiency of both methods applied to the problem stated
here need to be further investigated. The SVD method
used to solve the linear system approach can produce
a slightly better RAI section from post-stack seismic data
than the coloured inversion. Even tough, we suggest
that both approaches should be taken into account in

an interpretation project that makes use of the RAL
Additionally, we argue that as the inversion is applied trace
by trace and considering the usual seismic traces number
of samples, the SVD algorithm performance may not be a
problem in the inversion of an entire seismic volume.
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