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Abstract

Seismic interferometry is defined as the method to
redatum sources and receivers where there only are
receivers or sources, respectively. This can be done
by correlation- or convolution-based methods. In this
work we will present a new approach to reposition the
seismic array over the earth’s surface to an arbitrary
datum at depth in two steps using deconvolution-
based methods: (a) redatuming of receivers and (b)
redatuming of sources. This methodology accounts
for inhomogeneities in the overburden medium to
remove anticausal events.

Introduction

Seismic interferometry is a technique that allows to retrieve
the Green’s functions for sources at positions where only
receivers are available (or vice versa). The classic
redatuming procedure correlates surface seismic data with
those acquired at depth. This correlation-based method
has been well studied in the literature, by Wapenaar et al.
(2008), Schuster (2009), Curtis (2009), Wapenaar et al.
(2010), van der Neut (2012), etc.

Seismic interferometry by convolution is an alternative
to the classical correlation-based scheme. There are
many situations where the convolutional form is more
convenient than the correlation-based methods. One of
the main advantages of the convolution-based procedure
is its inherent compensation for the properties of the
source wavelet. Another important advantage is that the
underlying theory does not require the assumtion of a
lossless medium (Slob and Wapenaar, 2007).

In this work, we combine convolution-based interferometry
with inverse wavefield extrapolation to derive an alternative
procedure for retrieving the total wavefield at the datum.
Inverse wavefield extrapolation is a concept used to
describe the process of retrieving the focusing functions
at an arbitrary datum by means of retropropagation of the
wavefield recorded at the earth’s surface (van der Neut
et al., 2015).

In our proposed procedure, we use a convenient form of
inverse wavefield extrapolation to determine the upward
propagating Green’s function at the datum for a point

source at the earth’s surface. This upgoing Green’s
function is then used to retrieve the primary-reflected
wavefield at the datum. Using this new approach, we
reduce the influence of the overburden in the form of
multiples, spurious events of the Green’s functions, and
anticausal events. The only required information for the
proposed technique is a velocity model of the datum
overburden. This model is used to simulate the vertical
derivative of the transmitted wavefield to the datum and the
truncated overburden-scattered wavefield at the surface.

Redatuming of receivers

We consider two states A and B in the Helmholtz
equation in order to calculate the reciprocity theorem of
the convolution type. We assume that both states have
the same properties, i.e., ρA(x) = ρB(x) = ρ(x) and cA(x) =
cB(x) = c(x). Since the states differ only in the source,
corresponding wavefields pA and pB must satisfy

ρ(x)∇ ·
[

1
ρ(x)

∇p̂A
]
+

ω2

c2(x)
p̂A = −ŜA, (1)

ρ(x)∇ ·
[

1
ρ(x)

∇p̂B
]
+

ω2

c2(x)
p̂B = −ŜB, (2)

Here ρ(x) denotes the variable density, p̂ the pressure field,
c(x) is the spatially varying wave velocity and Ŝ(x,ω) is a
source term. From equations (1) and (2) we deduce the
reciprocity theorem of convolution type as

©
∫
S

∫ 1
ρ(x)

(
p̂B

∇p̂A− p̂A
∇p̂B

)
· n̂ds =

∫∫
V

∫ 1
ρ(x)

(
p̂AŜB− p̂BŜA

)
dv.

(3)

This equality is independent of the actual shape of volume
V . Considering that are no sources inside volume V , the
right-hand of equation (3) vanishes. To analyze the closed-
surface integral, we consider a cylindrical shape, where
the surface S is decomposed into three parts. Invoking
the Sommerfeld radiation conditions, we note that at
infinite radius, the integral over the cylinder mantle will not
contribute (Schuster, 2009). Denoting the top and bottom
parts of the cylinder surface as S1 and S2, respectively, we
can rewrite expression (3) as

∫
S1

∫ 1
ρ(x)

(p̂B
∇ p̂A− p̂A

∇ p̂B) · n̂1dx1dx2 =

−
∫
S2

∫ 1
ρ(x)

(p̂B
∇p̂A− p̂A

∇p̂B) · n̂2dx1dx2.

(4)
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Figure 1: Sketch of two sources at positions xA and xB just
above the surface S1. Also shown at the receiver position x
are the propagation directions of the incoming waves from
xA and xB and their angles θ A and θ B with respect to the
unit normal vector n̂ to the surface.

One-way reciprocity theorem of convolution type

To deduce the one-way reciprocity theorems, we consider
the two states, A and B, to represent the situations
in Figure 1. In both states, we allow for an arbitrary
inhomogeneous medium between the two surfaces, which
are defined as S1 =

{
(x1,x2,x3) ∈ R2|x3 = x1

3
}

and S2 ={
(x1,x2,x3) ∈ R2|x3 = x2

3
}

. Note that we do not consider
S1 to be a free surface. States A and B differ in source
distribution, with their sources located in xA and xB,
respectively, and the receivers along both surfaces.

According to Wapenaar and Berkhout (1989) the total wave
field can be decomposed in down- (+) and up-going (−)
constituents, as

p̂(x,ω) = p̂+(x,ω)+ p̂−(x,ω). (5)

Substitution of decomposition (5) in expression (4) yields∫
S1

∫ 1
ρ(x)

[(
p̂B
++ p̂B

−

)
∇

(
p̂A
++ p̂A

−

)
−

(
p̂A
++ p̂A

−

)
∇

(
p̂B
++ p̂B

−

)]
· n̂1dx1dx2 =

−
∫
S2

∫ 1
ρ(x)

[(
p̂B
++ p̂B

−

)
∇

(
p̂A
++ p̂A

−

)
−

(
p̂A
++ p̂A

−

)
∇

(
p̂B
++ p̂B

−

)]
· n̂2dx1dx2.

(6)

Assuming that the medium is smooth in a small region
around S1 and S2, the main contributions to the integrals
in equation (6) come from stationary points on surfaces
S1 and S2. At those points the absolute cosines of the
ray angles for p̂A and p̂B are identical. This implies, for
example, that the terms p̂B

+∇p̂A
− and −p̂A

−∇p̂B
+ give equal

contribution to the integral, whereas the contributions of
−p̂B

+∇p̂A
+ and p̂A

+∇p̂B
+ cancel each other (Wapenaar and

Fokkema, 2006). Hence, we can rewrite equation (6) as∫
S1

∫ 1
ρ(x)

(
p̂B
+∇p̂A

−+ p̂B
−∇p̂A

+

)
· n̂1dx1dx2 =

−
∫
S2

∫ 1
ρ(x)

(
p̂B
+∇ p̂A

−+ p̂B
−∂3 p̂A

+

)
· n̂2dx1dx2.

(7)

The normal vectors at surfaces S1 and S2 are n̂1 = (0,0,−1)
and n̂2 = (0,0,1), respectively. In accordance with the

State A State B

s

s s

s1 1

22

Figure 2: Two states with the same inhomogeneous
medium between surfaces S1 and S2. State A
describes the transmitted wavefield from S1 to S2 and
its scattered response recorded at S1, if the medium
is homogeneous above S1 and below S2. State B
describes the corresponding wavefields if the medium is
also inhomogeneous below S2.

previous procedure, we write, on both sides of equation
(7) the term p̂B

+∂3 p̂A
− as −p̂A

−∂3 p̂B
+, which is the most

convenient form for our deductions in the next section of
this work. Then, we can recast equation (7) into the form∫

S1

∫ 1
ρ(x)

[
(−∂3 p̂B

+)p̂A
−+ p̂B

−∂3 p̂A
+

]
dx1dx2 =

∫
S2

∫ 1
ρ(x)

[
(−∂3 p̂B

+)p̂A
−+ p̂B

−∂3 p̂A
+

]
dx1dx2.

(8)

Upgoing Green’s function

Let us now consider that in State A, the point source for
a down-going wave field is located immediately above S1,
creating a delta function in the lateral coordinates at S1.
Then, according to Wapenaar et al. (2014), the derivative of
the pressure field can be expressed as ∂3 p̂A

+ =− 1
2 δ (x−xA).

Moreover, we consider that in State A, all inhomogeneities
are restricted to the medium between S1 and S2, i.e., above
S1 and below S2, there are two homogeneous halfspaces
(Figure 2).

In State B, we consider the same inhomogeneous medium
between surfaces S1 and S2. Again, the medium above S1
is homogeneous. However, above S2 we consider now an
arbitrary inhomogeneous medium. As in State A, we again
consider a point source for a downgoing wave field just
above the surface S1, such that ∂3 p̂B

+ = − 1
2 δ (x− xB). Of

course the wavefields of both states admit decomposition
according to equation (5). A detailed analysis of the
propagating wavefield constituents in both states at both
surfaces results in the overview presented in Table 1.

Surface Direction State A State B
S1 + point source in xA point source in xB

S1 - ĜA
−(x,ω;xA) ĜB

−(x,ω;xB)

S2 + ĜA
+(x
′,ω;xA) ĜB

+(x
′,ω;xB)

S2 - 0 ĜB
−(x
′,ω;xB)

Table 1: Wavefield responses at surfaces S1 and S2 in the
states A and B, respectively.

Substitution of the expressions of Table 1 in the one-way
reciprocity theorem of convolution type (equation 8) allows
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to simplify the latter to

1
2ρ(xA)

ĜB
−(x

A,ω;xB)− 1
2ρ(xB)

ĜA
−(x

B,ω;xA) =

−
∫
S2

∫ 1
ρ(x)

ĜB
−(x
′,ω;xB)∂3ĜA

+(x
′,ω;xA)d2x′,

(9)

where we have also used that the vertical wavefield
derivatives at the point sources are given by delta functions
as mentioned above. Equation (9) is an expression
that allows for least-squares inversion to retrieve the up-
going Green’s function ĜB

−(x
′,ω;xB) in State B (i.e., for the

complete inhomogeneous medium) if we know the terms
1

2ρ(xB)
ĜA
−(x

B,ω;xA) and 1
ρ(x)∂3ĜA

+(x
′,ω;xA) in State A, which

use only a model of the inhomogeneities in between the
surfaces S1 and S2.

Redatuming of sources

The Helmholtz equations describing the wavefields for a
point source at xB in states A and B, which correspond to
the background and perturbed mediums, respectively, can
be written as

L AĜA(x,ω;xB) =−δ (x− xB) (10)

and
L BĜB(x,ω;xB) =−δ (x− xB). (11)

where the associated Helmholtz operators are

L A = ρA(x)∇ ·
[

1
ρA(x)

∇

]
+

ω2

c2
A(x)

, (12)

and

L B = ρB(x)∇ ·
[

1
ρB(x)

∇

]
+

ω2

c2
B(x)

. (13)

Here, ρA(x), ρB(x) and cA(x), cB(x) are the density
and velocity in the unperturbed and perturbed media,
respectively.

There is a unique difference wavefield Ĝs(x,ω;xB),
conventionally also known as scattered wavefield (Bleistein
et al., 2001), that allows to relate the two Green’s functions
of states A and B as

ĜB(x,ω;xB) = ĜA(x,ω;xB)+ Ĝs(x,ω;xB). (14)

It is our objective to determine this scattered wavefield due
to the presence of inhomogeneities below S2 as if recorded
with sources and receivers at S2.

Upon the use of the general form of the perturbation
operator or scattering potential, defined as (Rodberg and
Thaler, 1967)

V = L B−L A, (15)

and the wavefield decomposition (14), equation (11) can
be represented as(

L A +V
)[

ĜA(x,ω;xB)+ Ĝs(x,ω;xB)
]
=−δ (x− xB). (16)

Together with equation (10), this leads to

L AĜs(x,ω;xB) =−V
[
ĜA(x,ω;xB)+ Ĝs(x,ω;xB)

]
. (17)

At this point, we consider a Green’s function ĜA(x,ω;x′),
which satisfies a Helmholtz equation similar to equation
(10), however with a point source at x′. Multiplication of
this Helmholtz equation with Ĝs(x,ω;xB) yields

ρA(x)Ĝs(x,ω;xB)∇ ·
[

1
ρA(x)

∇ĜA(x,ω;x′)
]
+

ω2

c2
A(x)

Ĝs(x,ω;xB)ĜA(x,ω;x′) =−Ĝs(x,ω;xB)δ (x− x′),
(18)

Correspondingly, multiplying in both sides of equation (17)
by ĜA(x,ω;x′), we can explicitly write

ρA(x)ĜA(x,ω;x′)∇ ·
[

1
ρA(x)

∇Ĝs(x,ω;xB)

]
+

ω2

c2
A(x)

ĜA(x,ω;x′)Ĝs(x,ω;xB) =

− ĜA(x,ω;x′)V
[
ĜA(x,ω;xB)+ Ĝs(x,ω;xB)

]
.

(19)

Subtracting equation (19) from (18) and rewriting the terms,
we find

∇ ·

{
1

ρA(x)

[
ĜA(x,ω;x′)∇Ĝs(x,ω;xB)−

Ĝs(x,ω;xB)∇ĜA(x,ω;x′)
]}

=

1
ρA(x)

[
ĜA(x,ω;x′)V ĜB(x,ω;xB)− Ĝs(x,ω;xB)δ (x− x′)

]
.

(20)

After application of Green’s theorem, solving the volume
integral of the term with the delta function, and reorganizing
expression (20), we arrive at

Ĝs(x′,ω;xB) =

ρA(x′)

{∫∫
V

∫ 1
ρA(x)

ĜA(x,ω;x′)V ĜB(x,ω;xB)dV−

©
∫
S

∫ 1
ρA(x)

[
ĜA(x,ω;x′)∇Ĝs(x,ω;xB)−

Ĝs(x,ω;xB)∇ĜA(x,ω;x′)
]
· n̂ dS

}
.

(21)

Equation (21) represents the scattered Green’s function
with source in xB and receiver in x′. It is given by the sum
of a volume and a closed-surface integral, multiplied by the
unperturbed density in x′. Considering that in both states A
and B the overburden in between the surfaces S1 and S2 is
the same, the scattering potential satisfies V = 0 inside V .
Thus, ∫∫

V

∫ 1
ρA(x)

ĜA(x,ω;x′)V ĜB(x,ω;xB)dV = 0. (22)

Equation (22) allows us to simplify the convolution-based
interferometric equation (21) as an integral evaluated over
the closed surface S. In analogy to the previous section,
we divide the closed surface into three parts S1, S2 and
S3. Again, according to Schuster (2009) the Sommerfeld
radiation conditions guarantee that the integral over S3
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vanishes at infinity. With the remaining integrals over
surfaces S1 and S2 in equation (21), we have

Ĝs(x′,ω;xB) =

ρA(x′)

{∫
S1

∫ 1
ρA(x)

[
ĜA(x,ω;x′)∇Ĝs(x,ω;xB)−

Ĝs(x,ω;xB)∇ĜA(x,ω;x′)
]
· n̂1dx1dx2+∫

S2

∫ 1
ρA(x)

[
ĜA(x,ω;x′)∇Ĝs(x,ω;xB)−

Ĝs(x,ω;xB)∇ĜA(x,ω;x′)
]
· n̂2dx1dx2

}
.

(23)

According to Wapenaar and Berkhout (1989), the
wavefields in the above integrals can be decomposed into
the up- and downward propagating constituents. Taking
into account that the vectors are n̂1 = (0,0,−1) and n̂2 =
(0,0,1), equation (23) can be written as

Ĝs(x′,ω;xB) =

2ρA(x′)

{∫
S1

∫ 1
ρA(x)

[
Ĝs
−(x,ω;xB)∂3ĜA

+(x,ω;x′)+

Ĝs
+(x,ω;xB)∂3ĜA

−(x,ω;x′)
]
dx1dx2−∫

S2

∫ 1
ρA(x)

[
Ĝs
−(x,ω;xB)∂3ĜA

+(x,ω;x′)+

Ĝs
+(x,ω;xB)∂3ĜA

−(x,ω;x′)
]
dx1dx2

}
,

(24)

Since we consider a homogeneous halfspace above the
nonfree surface S1, there are no downward propagating
wavefields at S1. Therefore, the terms ĜA

+(x,ω;x′) and Ĝs
+

vanish at surface S1 (see Figure 3), and the integral over
surface S1 is zero. Thus, equation (24) reduces to

Ĝs(x′,ω;xB) =

−2ρA(x′)
∫
S2

∫ 1
ρA(x)

[
Ĝs
−(x,ω;xB)∂3ĜA

+(x,ω;x′)+

Ĝs
+(x,ω;xB)∂3ĜA

−(x,ω;x′)
]
dx1dx2

}
.

(25)

In the integral over surface S2, ĜA
−(x,ω;x′) also vanishes,

because in State A, the medium below S2 is also
homogeneous. Replacing xB by x′′, x′ by xB, and x by x′, and

=
s s s

s s s2

1 1

2 2

1

Figure 3: Sketch representing the geometrical situation in
equation (26).

invoking the reciprocity of the Green’s functions, equation
(25) assumes its final form

ĜB
−(x
′′,ω;xB) =

−2ρA(xB)
∫
S2

∫ 1
ρA(x′)

Ĝs(x′′,ω;x′)∂3ĜA
+(x
′,ω;xB)dx′1dx′2.

(26)

Here, we have identified Ĝs(x′′,ω;xB) = ĜB
−(x
′′,ω;xB) to

make the link with the first step of the redatuming
procedure. Equation (26) is the expression that describes
convolution-based interferometric redatuming. If the
scattering Green’s function with source at the earth’s
surface and receivers at datum ĜB

−(x
′′,ω;xB) is known,

and we can model the vertical derivative of the incident
Green’s function ∂3ĜA

+(x
′,ω;xB), it is possible to retrieve by

inversion the upward component of the scattering Green’s
function Ĝs(x′′,ω;x′) with source and receivers at the
datum. The situation is sketched in Figure 3.

Model

To validate above results we implemented equations (9)
and (26) in a simple model of flat homogeneous layers.
To further simplify things we consider the density in all
layers constant. The model had a width of 5 km and
depth of 1.5 km. The seismic array at the earth’s surface
(surface S1) consisted of 201 shots and the same number
of receivers for each shot, spaced at 25 m. The seismic
array at the datum (at 500 m in depth) has the same source
distribution as the one at the surface, and there are 201
receivers spaced at 25 m for each shot at the surface.
Synthetic seismic data were simulated considering three
situations: (1) shots and receivers are located at the
surface (Figure 4a) in the full model, (2) shots are located
at the surface and receivers at 500 m depth in the reference
model using the exact overburden velocity field and a
homogeneous halfspace below (Figure 4b), and (3) shots
and receivers are located at the surface in the reference
model (Figure 4c).

Results

The first step of redatuming consist in repositioning the
receivers of the seismic array at the earth’s surface to the
datum. For that step, we used equation (9). Input data are
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Figure 4: Modeling seismic data considering: (a) array of
sources and receivers at the surface, (b) array of shots at
the surface and receivers at 500 m depth and (c) array
of sources and receivers at the surface in the overburden
model.
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obtained from all of models of the Figure 4. The purpose is
to retrieve the upward Green’s function ĜB

−(x
′,ω;xB) at 500

m in depth by damped least-squares inversion.

The principal aspect of the first step of our numerical
inversion, i.e., the retrieval of the upward Green’s functions,
is that we actually invert a point spread function (PSF).
Using a damped least-squares scheme to retrieve the
inverse of the PSF, we tested different values of the
regularization parameter ε in the inverse process. We used
for ε four different percentage values with respect to the
maximum value of the PSF. These percentages were: (1)
1%, (2) 0.1%, 0.01% and (4) 0.001%. The inversion results
for these for values of ε are shown in Figure 5.

We note in Figure 5 that behind the principal primary
reflection, marked with a red arrow, other events are
visible, which are marked with green arrows. These
later events are upgoing constituents of the wavefield,
produced by overburden multiples (Barrera et al., 2016).
Also, it is important to note that all responses retrieved
by our inversion scheme do not include anticausal
events. This is one of the main differences between the
convolution-based procedure and conventional correlation-
based interferometry.

Continuing the full redatuming procedure, we used the
four different responses for the upward Green’s functions
of Figure 5 in the second step, that is, the redatuming
of the sources to the datum, using equation (26). In
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Figure 5: Upward responses obtained by the PSF inversion
according to equation (9) with different values of ε: (a) 1%,
(b) 0.1%, (c) 0.01% and (d) 0.001%.

other words, we retrieve the redatumed Green’s function
Ĝs
−(x
′′,ω;x′) using the now known downward Green’s

function Ĝs
+(x
′,ω;xB) (calculated in the first step) and the

vertical derivative of the transmitted wavefield ĜA
+(x
′,ω;xB).

The result, using the four versions of the upward Green’s
function of Figure 5, is depicted in Figure 6.
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Figure 6: Redatuming responses of shot 101 with different
values of ε in the PSF inversion: (a) 1%, (b) 0.1%, (c) 0.01%
and (d) 0.001%.

We observe in Figure 6 that the redatumed wavefields
recover the desired primary reflection event with slightly
different quality. While the larger values of ε do a better
job of suppressing artifacts, they also lead to a stronger
damping of the desired wavefield at larger offsets. We
notice a few traces of the the upgoing constituents from
the overburden in the redatumed data. These are present,
because we are inverting for the scattered field Gs instead
of the true reflected field at the datum.

The quality of the inversion result as a function of
the regularization parameter can be better assessed in
Figure 7, which compares the central trace of each
redatuming response to the modeled trace at the same
location. While all events are kinematically nicely matched
with the exact trace, we notice that the instabilities increase
with decreasing ε. The artifacts that come from the
inversion instabilities can be attenuated by FK filters
according to van der Neut and Wapenaar (2015).

Conclusions

In this work, we have derived a new scheme to calculate
the upward Green’s functions at a datum in depth. It
makes use of an appropriate way for inverse wavefield

15th International Congress of The Brazilian Geophysical Society



CONVOLUTION-BASED INTERFEROMETRIC REDATUMING 6

0.5 1 1.5
Time (s)

-1

-0.5

0

0.5

1
N

or
m

al
iz

ed
 a

m
pl

itu
de

exact model
=1%
=0.1%
=0.01%
=0.001%

Figure 7: Central traces of the redatuming responses in
the Figure 6 compared with the central trace of the exact
model.

extrapolation. With this methodology it is possible to
retrieve only the upward-propagating constituents at an
arbitrary focusing surface without anticausal events and
with reduced artifacts. The required input data are: (1)
seismic reflection data from a seismic array over the earth’s
surface, (2) an earth model for the region between the
surface and the datum. In this model, one needs to
simulate the vertical derivative of the transmitted wavefield
from the earth’s surface until the datum and the truncated
scattered wavefield of the overburden model with sources
and receivers at the earth’s surface.

Combining the upward Green’s function retrieved by
inverse wavefield extrapolation with the conventional
scheme of interferometric redatuming by convolution-
based methods, we were able to retrieve the primary-
reflection event in a synthetic-data example using a simple
synthetic velocity model. The redatuming responses had
slight influences of the upward constituents associated to
multiples in the overburden retrieved in the first step of the
redatuming scheme. As a major advantage, there is no
influence of anticausal events in the final responses, which
were removed with the inverse wavefield extrapolation in
the first step of the redatuming process.

The second step of the redatuming scheme presented
here demonstrate that the reflection event from the
interface below the datum was positioned correctly, and
this response kept the correct amplitude proportions as
compared to the corresponding data modeled at the datum
level.

It is to be stressed that the equations solved in this work
by means of damped least-squares inversion represent ill-
posed problems. Therefore, the solution by inversion is
very sensitive to small variations. Using different values
of the regularization parameter, we noted that the quality
of the results depend visibly on that parameter. While
large values help to suppress unwanted effects, they also
reduce the amplitudes of the desired events. The latter
effect increases with offset.
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