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Abstract

Most Full Waveform Inversion (FWI) formulations use
Quasi-Newton optimization algorithms to perform the
inversion for phisical parameters. In this paper
we are concerned with the inversion of the velocity
model, where we propose a two-phase approach. In
Phase |, we apply an Augmented Lagrangian method
to a constrained optimization problem, where the
constraints are based on velocity profiles and we
consider that the velocity model can be parameterized
by Radial Basis Functions. Moreover, the initial
approximation for the velocity is a homogeneous
model. In Phase Il we apply the Spectral Projected
Gradient method for a problem with box constraints
only and without parameterization of the velocity
model. Numerical experiments prove the effciency of
the new approach, and show the importance of Phase
| as the output for a good (initial) approximation for the
velocity model in Phase Il, which is very similiar to the
classical formulation for FWI.

Introduction

The seismic Full Waveform Inversion (FWI) is a powerfull
tool seismic imaging since it tries to estimate subsurface
parameters from seismic data. Theoretically, the FWI
achieves a high resolution for the velocity model if the initial
approximation is sufficiently close to the true (unknown)
velocity model. The fundamental basis for FWI unites
two important worlds of computational Geophysics that are
seismic modeling and seismic inversion. The state of the
art for classical FWI can be found in Lailly (1983), Tarantola
(1984) and Virieux and Operto (2009). The classical 2D
optimization problem in FWI is formulated as a curve fitting
in the least squares sense, i.e.,

Ny N T
Minimize ZZ/ dt [us (m; 1) = ds(x:,0) 2, (1)
0

s=1r=1

where m = m(x) = 1/c(x)*> is the square of slowness,
c(x) is the acoustic velocity, x = (x,z) € R? is the spatial
variable, us(m;x,,t) = u(m;x;,x,,t) is the acoustic wavefield
that satisfies, in this work, the bidimensional acoustic wave
equation with constant density, d(x,,t) = d(xs,x,,t) is the
observed seismic data for time 7 € [0,T], with N; source
positions at x; = (x;,z;) and N, receiver positions at x, =
(xr:Zr)-

However, optimization algorithms based on first order
approximations require a good initial approximation for the
velocity model, in order to guarantee the convergence
to the true velocity model. This problem has been one
of the big challenges for the success of the FWI and
some alternatives to obtain a good initial approximations
can be found applying tomography and stereotomography
methods. See, e.g., Prieux et al. (2012) and Tavakoli et al.
(2017).

The most established method that has been used for
solving the classical formulation for the FWI is the quasi-
Newton method L-BFGS (Limited memory Broyden—
Fletcher—Goldfarb—Shanno) proposed by Liu and Nocedal
(1989). However, the L-BFGS method solve an
unconstrained nonlinear problem and, then, if there
exist some additional information, it must be used as
regularization and/or penalization terms. Some works
using regularization and penalization formulations can be
found in Guitton et al. (2012), Leeuwen and Herrmann
(2016) and Esser et al. (2018).

Constrained Optimization Problem for FWI

The constrained optimization problem that we wish to solve
for the FWI is

Minimize  f(w)

subjectto  h(w) =0, @)
g(w) <0,
weQ,

where f:R" 5 R, h:R" — RV g:R" — R are continuous
functions and admit continuous first derivatives on R", and
Q C R" is closed.

The Augmented Lagrangian function is defined by
Zp(w, A o) = Fw)+ 2 [In(w) + 2/p|
+ 2o /e @)

where p > 0 is the penalty parameter, A € RV and

ue Rﬁ*’ are approximations for the Lagrange multipliers
associated equality and inequality constraints, respectively,
[(v)+]i = max{0,y;}, and || - || is the euclidian norm. Notice
that £ (w,0,0) is the classical L, penalty function. The
Augmented Lagrangian algorithm for solving (2) proceeds
by approximately minimizing (3) with respect to w at each
iteration, and updating the Lagrange multiplier vectors A
and u, and the penalty parameter p.

For the FWI problem, we consider that the acoustic
propagation velocity can be written as a combination of
some base functions, ¢; : RZ - R, i =0,1,...,n, i.e., the
acoustic propagation velocity c is given by

c(wix) = Go(x) 1 ¥ widu ). 4
k=1
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This is done to reduce the cost of the optimization
procedure, since numerical tests considering all the points
on the discretized model in the Augmented Lagrangian
solver resulted in unviable CPU times, even for a small
model for a serial implementation, i.e., without parallel
computing. The base functions ¢;(x) are chose according
to desired complexity of the velocity model. For example,
for a constant vertical gradient velocity model we can
choose n =2 and ¢y (x) = co, ¢1(x) =x, and ¢, (x) = z. Other
simples choices are possible and can be found in Camargo
and Santos (2017) and Camargo (2019).

Let us assume that we know the velocity somewhere in the
analysed region (this information may come from a vertical

well profile, for example): v(x,) for ¢ =1,...,N,. Then, the
constraints can be formulated as
hq(W§xq) = C(W;xq) - V(xq)v ()
or
gg(wixg) = (c(w;xg) — V(xq))z - EV(xq)Z: (6)

forg=1,...,N;and £ > 0.
Radial Basis Function

For geological models with higher complexity, the velocity
model can be parameterized using Radial Basis Functions
(RBF) (Buhmann, 2003; Wendland, 2005). In equation (4),
let us consider ¢ (x) = ¢(x —y;) = @(||[x —yll), where y, €
R2, k=0,1,...,n, are called centers, without any special
assumptions of mesh regularity, and ¢ : R, — R. Let us
assume that at arbitrary points x, € R?, £ =0,1,...,L, the
corresponding values c¢(x,) are fixed, with L > n.

In the case of L =n and assuming that there is no noise in
the data, we can interpolate ¢(x) via the linear combination
given by equation (4). The coefficients w are obtained by
the solution of the linear system

Aw = b, @)

where A is the square matrix L x n with elements q; ; =
¢j(x),i=1,2,...,L, j=1,2,...,n, and b is the vector with
entries b; = c(x;) — ¢o(x;), i = 1,2,...,L. For the RBF used
in this work it can be proved that A is nonsingular.

In the case that the data set is contaminated with noise or

L > n, instead of using interpolation, we can solve system

(7) in the least square sense, i.e., the coefficients w € R"

are given by min |Aw — b||>. This case will be denoted by
WER”

LS-RBF.
Two-Phase Approach for FWI
The Two-Phase approach for FWI can be summarized as:

Phase I: Solve the problem in standard form given by (2)
using the Augmented Lagrangian algorithm proposed
by Birgin and Martinez (2014). The acoustic wave
equation is solved in time domain by a finite-difference
method (LeVeque, 2007).

PHASE II: Solve a problem similar to the one given by
equation (1), but in frequency domain and adding box
constraints, and using the Spectral Gradient Projected
(SPG) method proposed by Birgin and Martinez (2002),
which is also is used for solving the subproblem associated
to the minimization of (3). The acoustic wave equation is

solved in frequency domain (Helmolt'z equation) (Leeuwen
and Herrmann, 2016), for some values of the frequency.

Firstly, we choose the parameterization of the velocity
model, define an initial approximation for w, and perform
Phase |. The final estimated model recovered by the
parametrization in this phase is then used as an initial
approximation for the velocity model in Phase Il. Before of
declaring the end of execution, we can decide to improve
the information required in the parameterization (the RBF
or LS-RBF nodes, for example). In the affirmative case we
return to Phase |. Otherwise, we finish the execution.

Types of Problems for Constrained FWI in Phase |
Problem 1

Using the RBF parameterization, the first constrained
optimization problem is given by

Minimize  f(w) =J(w)+ 6||Aw —b||?
subjectto  h(w)=0,

g(w) <0,

weQ,

(8)

where Q= {weR"| —102! < w; < 10%,i=1,...,n},
J:R" - Ry is a function that measures the misfit
between observed and modeled data, 6 is a regularization
parameter, and i and g are given by equations (5)—(6).

Based on Guitton (2012) the regularization parameter is
given by
1 J(w®)
T2 ||Aw0 — b2’

where w! is the initial guess for the inversion process.

(9)

Observe that the interpolation condition could be a linear
equality constraint instead of being added to the misfit
function. Numerical tests considering such possibility
indicated that it may cause convergence to stationary
points of the infeasibility measure, ||h(w)|> -+ [lg(w)|%.

Problem 2

The second optimization problem uses the LS-RBF
parameterization, which results in an unusual FWI
formulation, since the functional J appears as an inequality
constraint:

Minimize  f(w) = ||[Aw —b|]?

subject to 1(w):0
¢(w) <0, (10)
J(w) < eJ(w),
weQ

where Q={weR"| —100 < w; < 100, i=1,...,n}, hand
g are the equality and inequality constraints given by (5)—
(6),and 0 < e < 1.

Problem for Constrained FWI in Phase Il

In Phase I, the constrained optimization problem is given
by

Minimize |ty (m3 x,, @) — dy (x,, @) [> + 7] D(m)||*
s=1r=1i=1
subjectto  my,;, <m; <mye, i=1,2,...,N,

(11)
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where vy is a regularization parameter, N = N, X N; is
the total number of points for the spatial discretization,
Ny is the number of chosen frequencies where iy is to
be computed, and D is the forward first order difference
operator.

Misfit function and Gradient in Phase |

To analyse the sensitivity of the parameterization in the
objective function, we choose to perform in Phase | tests
using the following three choices for the misfit function J.
Let us write

J(w) = /Ddx/OT dr A (u(wix,1)), (12)

where D c R? is the spatial domain, T is the maximum
recording time, and 7 is one of the following functions:

1. Weighted Least Squares (WLS),

Ns N,

3

; (13)

. . — . 2
S(x—x,)) {u,(w,x,t) d,(x,t)}

o

l\)\'—

i=1j=1

2. Weighted Least Squares with Offset Weighting (WLS-OW),

35

llN‘] ]%16 x—x, {bel x| {W} }2;
(14)

l\) \

3. Cauchy,

,,2

(15)

In the equations above, 6 is the Dirac’s delta “function”,

NI‘
o = $ Y (di(x,.1),di(x,,1)), for i=1,2,...,N;, and B; j =

1
\/—<d[(xrj,z),d[(x,j,z)>, fori=1,2,...,Nyand j=1,2,... N,
and (-,-) denotes the canonic inner product,

0= [ anno. (16)

The gradient of J is computed by the adjoint-state
method (Fichtner, 2011) and is given by

VI(w)]i = —2/1[;) c((i(?)»* Ix)dx, i=12,....n, (17)
with r
:/0 dr q(x, T — 1)y (w3, 1), (18)

where ¢ is the adjoint-state of u.
Numerical Experiments
Phase | parameters

The seismic data was obtained by a finite-difference
method (LeVeque, 2007) with a centered scheme of
second order in time and sixth order in space. During

the inversion process the same scheme is used, but only
fourth order in space. The point source is a Ricker
wavelet with peak frequency of 20 Hz. The absorbing
boundary conditions (Kosloff and Kosloff, 1986) has an
effective length of 51 points on all edges of the model. We
have used the solver ALGENCAN (Birgin and Martinez,
2014) with tolerance &, = 10~* for stationary points,
feasibility tolerance ef.,s = 1073, maximum number of
inner iterations equals to 20 in both problems and maximum
number of external iterations equals to 16 in Problem 1 and
8 in Problem 2. In both problems, the initial aproximation
for the Lagrange multipliers is the null vector. For the
RBF, we used the Wendland-2 function and the centers
were chosen through the Halton’s sequence (Halton, 1960)
using the velocity model illustrated in Figure 1, where the
black circles indicate a number of 251 centers used in
Problem 1, i.e., w € R®!,

¢ (km)

Figure 1: Velocity model used to choose the centers of the
RBF by the Halton’s sequence. The knots containing the
velocity information are obtained by the nearest neighbors
of centers.

For Problem 2, the number of centers was reduced to 51,
that is, w € R3!. The collected knots containing the velocity
data set are obtained by the nearest neighbors of centers.
The background function in the linear combination was
¢o(x) = 1.5 (in km/s). The target model is the Marmousi
II (Martin et al., 2002) shown in Figure 2, which contains
three velocity profiles used in the constraints, with random
noise of 10% on the bigger velocity, where each one has
31 points. In the experiments, we consider the first 23
points for the equality constraints and the remaining 70
for the inequality constraints, with € = 0.001v,,,,, Where
Vinax = rna<x93v(xq) 3.7 km/s.

The acquisition survey is composed by 5 common-shots
with 101 receivers each, where the first shot is located
at x; = (0.5 km,0.25 km), with source spacing of 500 m,
minimum offset of 200 m, and receiver spacing of 10 m.

Phase Il parameters

In Phase Il, the seismic acquisition line is the same as
in Phase |, but with a denser distribution of shots and
receivers: 86 shots with spacing of 40 m, the first shot
located at (0.1 km,0.25 km) and 172 receivers distributed
along the range 100 m to 3.52 km with spacing of 20 m. We
perform the seismic inversion in frequency domain, i.e., we
solve Helmholtz's equation for modeling at frequencies 4
Hz, 5Hz, 7 Hz, 12 Hz and 16 Hz. These values were based
on the work of Tavakoli et al. (2017). The optimization
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35

¢ (kim/s)

z (km)

Figure 2: Marmousi Il model. The x indicates the positions
for the velocity profiles.

was done using the SPG method (Birgin and Martinez,
2002) with optimization tolerance &€ = 108, and maximum
number of iterations equals to 40. Moreover, N = 60,551,
Mypin = 1 /v = 1/3.7%> = 0.07 [s/km]?, and myuq, = 1/1.57 =
0.44 [s/km]?.

¢ (km/s)

¢ (kimm/s)

z (km)

Figure 3: Final approximation in Phase | resulting from
Problem 1 (top) and Problem 2 (bottom).

Numerical analysis

The initial approximation in Phase | in both problems is
w? =0, i.e., a homogeneous velocity model c(w®,x) =
1.5 km/s. Figure 3 shows the approximations obtained by
ALGENCAN using Cauchy'’s functional (15), for Problems 1
and 2, respectively, since of the three functional analysed
in the experiments, it is the one that presented more robust
results. The algorithm stopped because it reached the
maximum number of iterations. In Figure 4 are depicted
the velocity profile at x = 1.5 km compared with the profiles

obtained for each functional tested in Phase |, for Problems
1 and 2. Although the final approximations do not present
a good resolution when compared with the target model,
the misfit in the velocity profiles for both problems are
in good agreement, which contributes to a good initial
approximation for Phase II.

4 ‘ ‘
True with 10% of noise
351 ——wLs
i~ - WLS-OW

vg (km/s)

X
1.5%-
1
0 0.3 0.6 0.9 1.2 1.5
z (km)
4 ——— |
True with 10% of noise| | |
357 ——wLs D &
—~ 3l ~WLS-OW L R
5 !
~ += = Cauchy |
525 ***** e AV —&f N
= [
ook —-= V- - — -
-V y \ | |
1T Y N
| | | |
1 | | | |
0 0.3 0.6 0.9 1.2 L5

z (km)

Figure 4: Comparison of velocity profiles at x = 1.5 km
resulting from Problem 1 (top) and Problem 2 (bottom).

Figure 5 shows the final approximations obtained in Phase
II, using the approximation obtained in Phase | and Figure 6
shows the estimated model for an initial affine velocity
model, that is, the same velocity model used for the choice
the RBF centers (Figure 1). These results will be used
as a reference model for comparison with the Two-Phase
approach. Comparing with Figure 5, we observe that
the Two-Phase approach has a better resolution in the
region [1,3] x [1,1.5]. Observing the bottom of Figure 5, we
conclude that in the region [3,4] x [1,1.5], Problem 2 had a
worse resolution.

In order to analyze the robusteness of the Two-Phase
approach, Figure 7 shows the relative errors for the
estimated velocity in Phase Il, using Problem 1, Problem 2
(using the initial model obtained in Phase 1), and the affine
velocity model (see Figure 1) as the initial approximation
(without Phase I).

For the case of Problem 1, less than 13% of the grid
points present a relative error greater that 15%, whereas
for the other two cases, this percentage increases to 20%.
However, these values can be reduced once we update
the data used in the RBF, and perform Phase | & Il again,
since these final approximations are of better quality than
the model used previoulsy (Figure 1).

Sixteenth International Congress of The Brazilian Geophysical Society



A.W. CAMARGO & L.T. SANTOS 5

35

&
¢ (km/s)

Figure 5: Final approximation in Phase Il with initial
approximation from Problem 1 (top) and Problem 2
(bottom).

z (km)
c (km/s)

L5

Figure 6: Final approximation in Phase Il with initial
approximation from affine velocity model without using
Phase I.

Conclusions

In this work, we present a Two-Phase approach for FWI,
based on constrained optimization problems. In Phase
I, the constraints are constructed using velocity profiles
and, in Phase Il, they are simple box constraints. In
addition, in Phase | it is used a parameterization of the
velocity model based on Radial Basis Functions, thus
reducing the number of inversion variables. The numerical
experiments show that we can start in Phase | with a
constant velocity model thanks, to the profile information,
and the final velocity model obtained becomes a good initial
guess for the point-to-point inversion in Phase |l. Besides
that, this approach is better alternative than the application
of tomography and/or stereotomography methods to find

Relative Error (%) Relative Error (%)

Relative Error (%)

z (km)

Figure 7: Relative error for Problem 1 (top), Problem 2
(middle), and reference model [affine velocity] (bottom).

an initial velocity model for FWI, since the Two-Phase
approach is robust enough and the use of RBF provides
the possibility of smart upgrades in the initial data.
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