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Abstract   

Shear sonic wave velocities can be obtained by monopole 
sources in logging tools only for fast formations, namely 
where formation shear velocity is higher than wave 
velocity in the drilling mud. The dipole source is used for 
estimating shear velocity in slow formations, by indirectly 
processing the flexural mode excited in the borehole. The 
dispersive characteristic of the flexural mode, 
nevertheless, renders useless the Slowness-Time 
Coherence method, the traditional algorithm used for 
processing non-dispersive sonic waveforms from 
monopole sources. We report the application of 
Dispersive Slowness-Time Coherence to process sonic 
log waveforms acquired using dipole sources. This 
method uses modeled dispersive curves created from 
classic wave propagation theory and can overcome the 
previously mentioned limitations. We tested our 
implementation using real data from four wells drilled in 
formations with distinct elastic characteristics and found 
our results compatible to the ones offered by service 
companies.  

 

Introduction 

Processed sonic log waveform raw data is the main 
source of information for compressional and shear wave 
velocities, two parameters that compose every basic 
dataset used for petrophysical evaluation of hydrocarbon 
reservoirs. Sonic velocities can be used in porosity and 
elastic properties estimations, seismic time-depth 
calibration, besides investigation of anisotropy and 
hydraulic permeability. One key constraint in processing 
sonic waveforms is obtaining shear wave velocities in 
slow formations, which is usually done indirectly by 
processing the highly dispersive flexural modes excited in 
the borehole by dipole sources in the logging tool. These 
products are usually offered by commercial software from 
service companies, but their processing algorithms are 
often not clear to the final user, allowing little or no control 
of the outcomes. In this work we implemented and 
successfully tested one generalization of the traditional 
coherence-based processing method, aiming to develop 
an independent solution from those offered by services 
companies.  

The main method for processing sonic waveforms 
generated by monopole sources is the Slowness-Time 

Coherence (STC). It’s a reliable method for processing 
the non-dispersive headwave modes generated by this 

kind of source, providing sonic logs for both PV  and SV  

when the formation is fast. However, for slow formations, 

namely where SV is smaller than the wave velocity in the 

drilling mud, the monopole source can probe only PV . 

Industry overcame the limitation by introducing the dipole 
source in the sonic tool. This source generates a flexural 
mode in the borehole, for which low-frequency 

components travel with velocity close to formation SV . 

Nevertheless, this behavior raises the need for another 
processing method, once STC is not suitable for handling 
dispersive data.  

To overcome this limitation, we implemented the 
Dispersive Slowness-Time Coherence (DSTC) to process 
dipole waveforms. DSTC uses dispersion curves in the 
Fourier domain to correct for the dispersive effects found 
in the dipole waveforms, then processing the resulting 
pulses using STC. The success of this method depends 
on the use of suitable dispersion curves, which we 
obtained by theoretical wave propagation modeling.  

 

Methods 

The STC method (Kimball and Marzetta, 1984) is based 
on a coherence estimation by cross-correlating the 

acquired waveforms. The coherence s)(T ,  is defined 

by 

 

where T is the reference time, wT is the length of the 

integration window,  N  is the number of receivers in the 

logging tool, mX  is the thm  waveform, s if the wave 

slowness (reciprocal of velocity), and d is the distance 

between receivers. Eq (1) shifts the thm   waveform by 

an amount of time defined by the guessed slowness 

s and the distance 1)d(m  between the 

thm  receiver and the first receiver.  

For every position in the time axis and every slowness in 
the vertical axis, this method computes a coherence value 
that can be shown in a STC map or a contour plot. We 
highlighted in Eq. (1) the time shift term in gray and the 
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stacking term in green. Wherever the map shows a 
coherence peak, one can extract from the axis the 
slowness and the time of occurrence of one wave mode 
propagation, e.g. a P-wave or an S-wave. The time-
window allows for the separation of events in the STC 
calculation. Figure 1 shows a coherence map with two 
peaks representing the coherence of P and S events for 
one single depth, with arrows pointing the slowness’ 
values read in the map and the corresponding final sonic 
log positions. 

 
Figure 1:  Top: STC map showing two coherence peaks 
for two different wave modes, and arrows pointing their 
values in the sonic log depth (bottom).  

Dispersive modes are a major limitation for using STC,  
because the method may find multiple slowness values 
that maximize the coherence in very close positions in the 
time axis. Moreover, the weak flexural mode excitation in 
the low-frequency range lowers the signal-to-noise ratio in 
the region of interest, reducing the final quality of shear 
wave velocity estimation through STC. Figure shows an 
STC plot computed for dipole data. The region of 
maximum coherence is distorted and ultimately useless 

for accurate estimation of SV . To circumvent this problem, 

Kimball (1998) proposed the DSTC method. 

 

 
Figure 2: STC plot computed for dipole data. There are 
more than one possible slowness values competing for 
the final result. The coherence peaks tend to be distorted 
when STC is used to process dipole data. 

 

The DSTC is based on the time-shift property of the 
Fourier Transform, where a shift in the time domain 
corresponds to a linear phase shift in the frequency 
domain. Thus, the time shift that would be applied by the 
STC (gray in Eq. 1) becomes a multiplication of the 
transformed waveforms by a phase-factor: 

 

 

where 
-1F  denotes the inverse Fourier Transform,  f  is 

the frequency, and 1j  is the imaginary unit.  

The DSTC algorithm first performs a Fourier Transform in 
each waveform, subsequently applying the phase 
correction as in Eq (2), but now the slowness defining the 
phase shift is also a function of frequency, defined by a 
dispersion curve. In other words, before returning the 
transformed waveforms to the time domain, the DSTC 
method corrects the dispersion effect using dispersion-
curves that are functions of the slowness. After the 
correction and the inverse Fourier Transform, the method 
is similar to the non-dispersive STC. 

Figure 3 shows in the left panel 13 synthetic waveforms 
with non-dispersive waves (colors) and dispersive waves 
(black). Due to the dispersion, the waveforms change 
shape gradually as the wave propagates from the first to 
the last receiver. The top-left panel shows the average 
amplitude spectrum in blue and dispersion curve in red. 
The dispersive waveforms were built using this dispersion 
curve, while the non-dispersive waveforms were built 
using the low-frequency slowness value, of 190 µs/ft. The 
bottom-left panel shows individual amplitude spectra 
(black) and phase spectra (red). 
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Figure 3: Right: synthetic waveforms of 13 receivers for 

non-dispersive waves (colors) and dispersive waves 
(black). Top-left: average amplitude spectrum (blue) and 
dispersion curve (red). Bottom-left: individual amplitude 
spectra (black) and phase spectra (red). 

 
Figure 4 shows the processing results for the two 
methods: STC in the left panel and DSTC in the right 
panel, for the synthetic data shown in Figure 3. The STC 
map shows a peak around 205 µs/ft. One can verify that 
this value is close to the slowness at maximum amplitude 
in the spectrum (see Figure 3). The DSTC map, 
meanwhile, shows a peak around 190 µs/ft, in agreement 
to the low-frequency slowness. This preliminary result 
confirms that the DSTC can correct the dispersion in the 
waveforms. 
  

 
Figure 4: Left: STC map with a peak around 205 µs/ft. 
Right: the DSTC map with a peak around 190 µs/ft, in 
agreement to the low frequency slowness.  

 

One key point for using DSTC is obtaining dispersion 
curves that represent the dispersion observed in the 
waveforms. For this, we used a model based on the 
classic wave propagation theory. It is a solution for the 
homogeneous form of the Navier equation (Tang & 
Cheng, 2004), describing the displacements in the 

borehole system where normal modes of propagation are 
excited. 

Our model is a function of the formation parameters, such 
as compressional and shear formation velocities and 
formation density, and borehole parameters, namely 
radius, drilling mud density, and drilling mud velocity. A 
dispersion curve comes from the roots of the determinant 
of the coefficient matrix formed from the system of 
equations generated by applying borehole boundary 
conditions to the Navier equations. In order to generate a 
dispersion curve, a root finding procedure must be 
evaluated for all possible frequencies. Figure 5 shows the 
determinant for the 1600 Hz frequency with one root (red 
circle) that is the flexural wave velocity for this frequency. 
The flexural mode must be slower than the shear wave 
mode in the formation (Tang & Cheng, 2004), so the 
procedure neglects every root at the right of the red 
vertical line in Figure 5. 

 
Figure 5: Determinant for the 1600 Hz frequency with 
one root (red circle): the flexural wave velocity for this 
frequency.  

Figure 6 shows a dispersion curve obtained for a set of 
borehole and formation parameters (blue line), the 
amplitude spectrum (yellow dashed line) and the 
dispersion points observed in real dipole waveforms (dots 
with colors according to the amplitude spectrum), the last  
obtained by Phase Based Dispersion Analysis (PBDA) 
proposed by Assous (2014). Even though the PBDA 
method delivers data-driven dispersion estimates, flexural 
mode amplitude spectrum in slow formations usually 
shows a very low signal-to-noise ratio, making it difficult to 
obtain the shear wave velocity from extrapolating 
experimental data. This lack of signal in low frequencies, 
the most important region of the spectrum for dipole sonic 
log processing, is the main reason we chose the model-
driven approach, such as DSTC. 

Finally, for DSTC, all the model parameters must be held 
constant, except the shear velocity, that must be varied in 
a pre-defined range, in order to check which dispersion 
curve maximizes the semblance between the waveforms. 

 



ALGORITHM FOR PROCESSING DISPERSIVE WAVES FROM DIPOLE SONIC TOOL 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Sixteenth International Congress of the Brazilian Geophysical Society 

4 

 
Figure 6: Dispersion curve (blue line), amplitude 
spectrum (yellow dashed line) and the dispersion 
observed in real dipole waveforms (dots with colors 
according to the amplitude in the spectrum) obtained by 
the PBDA method.  

 

Results 

 

We tested our implementation for processing real data 
from four wells with different characteristics. Well A dipole 
data was acquired in a fast formation region and was 
processed using both STC and DSTC. Figure 7 shows in 
the left track of both panels the resulting log (green line) 
against the reference sonic log, processed using 
commercial software (white line), with the semblance map 
collapsed to the slowness axis direction in the 
background. We also show the difference plot between 
our results and the reference log. The left panel shows 
these features for the DSTC, while right panel shows 
them for the STC. Figure 7 confirms that STC is not 
suited for dipole data, overestimating the slowness in the 
entire range. It also shows that DSTC can process dipole 
data much more accurately, producing an unbiased 
difference log with small deviations.   

Figure 8 shows a similar plot for the Well B, with data 
acquired in a slow formation region.  Although in this case 
the STC performed better than in Well A, it still shows a 
bias in the difference plot, suggesting that the method 
overestimates the slowness values. The DSTC produces 
better results.  

Figure 9 shows results for Well C with data from a very 
slow formation, plotted against the reference log (white 
line) and with the coherence map collapsed to the 
slowness direction in the background. DSTC performed 
very well, with small differences for the reference result.  

Finally, Figure 10 shows results for Well D, in a slow 
formation with a non-uniform caliper. Such cases are 
challenging for processing, even using software from 
service companies, as a uniform borehole is assumed in 
the wave propagation theory. Nevertheless, we consider 

the results satisfactory, with a small overestimation in the 
slowness only in the non-uniform diameter region.   

 

 
Figure 7: Left panel, left track: DSTC results for dipole 

data of Well A (green line), plotted against the reference 
log (white line) and with the coherence map collapsed to 
the slowness direction in the background. Left panel, right 
track: difference log, computed between our results and 
the reference log. This result shows a difference log with 
low deviations, which confirms that the DSTC is capable 
of correcting the dispersion in the dipole data.   Left panel: 
the same layout as the left panel, but using STC. This 
method clearly overestimates de slowness values.  
 

 
Figure 8: Well B slow formation processing, in the same 

layout as Figure 7. Although STC performed better than in 
Well A, it still shows an overestimating bias in the 
difference plot. DSTC produces better results. 
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Figure 9: left track, the DSTC method results for dipole 
data of Well C (green line), plotted against the reference 
log (white line) and with the coherence map collapsed to 
the slowness direction in the background. Right track: 
difference log, computed between our results and the 
reference log. 

Conclusions 

Shear wave slowness from sonic log in slow formations 
can be obtained from modeling flexural waves. We 
demonstrated that non-dispersive methods (STC) are not 
suitable for extract correct shear slowness values from 
this wave mode, and implemented DSTC that corrects the 
dispersion effects using theoretical dispersion curves. We 
also built an algorithm based on classical wave theory to 
obtain the dispersions curves from borehole and 
formation parameters, to be used as an input for the 
DSTC method.  

The results are far better than those produced using the 
STC method. We successfully processed four sonic logs 
and compared them to reference logs coming from 
commercial software or service companies. Our results 
are similar to the reference ones.  

The theoretical model used in this work assumes a 
homogenous, isotropic media, with source and receivers 
in the exact center of an open, vertical borehole and 
constant caliper. These assumptions simplify the math, 
but can negatively impact the solutions in more complex 
formations or damaged wellbore walls. For further 
advanced studies, we intend to further improve the model 
in order to account for anisotropic formations, irregular 
borehole profile, the presence of casing and tool, LWD 
acquisitions and deviated wells. 

 

 
Figure 10: Results for Well D results. The right track 

shows the caliper log (gray), with a non-uniform borehole 
diameter between ~2120m and ~2150m. In this region, 
the processing methods can struggle, as they assume 
constant diameter. The results, shown in the left panel, 
are worse in this region. Still, the differences are small. 
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