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Abstract

Solving the 1D Marchenko equation by means of
iterative schemes allows to obtain the redatumed
Green’s function at an arbtrary focusing position. We
compare two algorithms proposed in the literature
to achieve this goal. Our careful implementations
have demonstrated that while kinematically equivalent,
these algorithms lead not to fully identical results.
While the older algorithm is somewhat faster, the
newer one provides superior amplitudes and separate
up and downgoing components of the recovered
Green’s function.

Introduction

The one dimensional Marchenko equation is a well-known
integral equation that solves the inverse scattering problem
for a constant background medium with some localized
scattering region.

Rose (2002) developed an iterative way to construct a
particular initial waveform that reduces to a δ at a particular
time, called the focusing time. He also proved that by
constructing this waveform we are solving the Marchenko
equation.

Broggini and Snieder (2012) demonstrated that combining
the solution of this scheme with its time-reversed version
allows to obtain the redatumed Green’s function at a
focusing position. Wapenaar et al. (2013) extended
this principle to three dimensions and derived, via
Green’s theorem, the coupled Marchenko equations, which
constitute a relationship between the Green’s function
and the fundamental solutions of the inverse scattering
problem. van der Neut et al. (2015) later developed
an alternative iterative scheme to solve the coupled
Marchenko equations. His scheme bears some similarity
to Rose’s iterative scheme.

In this paper, we present a derivation of the one
dimensional coupled Marchenko equations and show a
comparison between the two schemes.

Theory

The Marchenko Integral Equation is a relation that solves
the perturbed Helmholtz equation, also known as time

independent Schrödinger equation (Lamb, 1980), given by

d2

dx2 f̂ (x,ω)+

[(
ω

c0

)2
−α(x)

]
f̂ (x,ω) = 0 . (1)

Here, f̂ (x,ω) is the fundamental solution for this type of
problem, and α(x) is the medium perturbation, also called
the localized scattering potential.

It is well-known that a second-order differential equation
like (1) has two fundamental solutions. For brevity
purposes, here we consider only the fundamental solution
consisting of a right-going waveform inciding from the left-
hand side, crossing the scattering region in such a way that
on its right-hand side only a δ -pulse propagates to the right.
This fundamental solution can be represented in the time
domain as

f1(x, t) = c0δ (x− c0t)+ c0H(c0t− x)CR(x,c0t) , (2)

where CR(x,c0t) is the so-called coda. Waveform f1(x, t)
is the searched-for fundamental solution of (1) if, when the
coda passes throught the scattering region, it cancels all
other left-to-right going pulses created by the leading δ -
pulse, such that to the right of the scattering region, only a
δ -pulse remains with the same propagation direction of f1
(Figure 1).
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Figure 1: Right-going fundamental solution of equation (1).
A wavefield f+1 (x, t) consisting of a δ -pulse and a coda
incides from the left (blue arrow) on the localized scattering
region (α(x) 6= 0), producing a scattered wavefield f−1 (x, t)
(green arrow) propagating to the left and a δ -pulse (black
arrow) propagating to the right. All right-going scattered
events produced by the incident δ -pulse are canceled by
the coda.

Wapenaar et al. (2013) denominate the fundamental
solution f1(x, t) focusing function, because to the right of
the scattering region, it consists of a right-going δ -pulse
only. For this reason, we can relate it with the Green’s
function G (x,ω;xs), i.e., the solution of

d2

dx2 Ĝ (x,ω;xs)+
ω2

c(x)2 Ĝ (x,ω;xs) = δ (x− xs) . (3)

Actually, since in a homogeneous 1D unbounded medium,
the solution to equation (3) is (Bleistein et al., 2001)

G (x, t;xs) =
c0

2
H(c0t−|x− xs|) , (4)

but we want to see a propagating unitary pulse, we
consider a modified version of equation (3) with a time
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derivative and a normalization applied to the source term,
i.e.,

d2

dx2 Ĝ(x,ω;xs)+
ω2

c(x)2 Ĝ(x,ω;xs) = 2i
ω

c0
δ (x− xs) , (5)

where
Ĝ = 2i

ω

c0
Ĝ . (6)

Next, we multiply equation (1) by Ĝ(x,ω;xs), and equation
(5) by f̂1(x,ω) and subtract the results. We then integrate
the differences from slightly beyond the source point xs to
slightly beyond the desired focusing point x f and apply the
1D version of Green’s theorem (see, e.g., Bleistein et al.,
2001). In this way, we find

lim
ε→0+

∣∣∣∣(Ĝ++ Ĝ−
) d

dx

[
f̂1
+
+ f̂1

−]
−
(

f̂1
+
+ f̂1

−) d
dx

[
Ĝ++ Ĝ−

]∣∣∣∣x f +ε

xs+ε

= 0 , (7)

where we have assumed that the velocity distribution c(x)
in equation (3) equals the one in equation (1) within the
interval (xs,x f ) and that the velocity is constant in the small
vicinities of size ε to the right of xs and x f . Moreover, we
have written the involved wavefield as sums of their left-
going (-) and right-going (+) components.

Using a high frequency approximation for both wavefields,
we can show that at xs and x f ,

Ĝ−
d
dx

f̂−1 ≈ f̂−1
d
dx

Ĝ− and Ĝ+ d
dx

f̂+1 ≈ f̂+1
d
dx

Ĝ+ , (8)

Ĝ−
d
dx

f̂+1 ≈− f̂+1
d
dx

Ĝ− and Ĝ+ d
dx

f̂−1 ≈− f̂−1
d
dx

Ĝ+ . (9)

Thus, in the limit of very small ε, equation (7) simplifies to

lim
ε→0+

[
Ĝ+ d

dx
f̂1
−
+ Ĝ−

d
dx

f̂1
+
]∣∣∣∣

x=x f +ε

=− lim
ε→0+

[
f̂1
+ d

dx
Ĝ−+ f̂1

− d
dx

Ĝ+

]∣∣∣∣
x=xs+ε

. (10)

Our fundamental solution f1(x, t) has to satisfy some
convenient constraints. We require it to pass at focusing
point x f at t = 0, which implies that it has to pass at xs (the
source injection position for G(x, t;xs)) at t = −t f , where t f
is the one-way traveltime between xs and x f . Moreover,
beyond x f , f+1 is given, by construction, by a δ -pulse
and f−1 vanishes. These requirements translate into the
conditions

d
dx

f̂1
−
(x f + ε,ω) = 0 , (11)

d
dx

f̂1
+
(x f + ε,ω) = i

ω

c0
eiωε/c0 . (12)

Moreover, since the medium is assumed to be
homogeneous to the left of xs, the right-going part of
G slightly to the right of xs must still be equal to what
it would be in a homogeneous medium. Thus, taking
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Figure 2: Velocity model. Markers denoted by × are the
chosen focusing points.

the derivative and Fourier Transform of equation (4) and
making use of equation (6), we find

d
dx

Ĝ+(xs + ε,w,xs) = i
ω

c0
eiωε/c0 . (13)

Finally, the left-going part of the Green’s function is related
to the reflection response R(xs, t,xs) of the medium. Taking
the spatial derivative of its Fourier transform, we therefore
have

d
dx

Ĝ−(xs + ε,ω,xs)≈−i
ω

c0
R̂(xs + ε,ω;xs) , (14)

where R̂(x,ω;xs) is the reflection response of the medium
for the normalized source according to equation (5).

Substituting these boundary conditions in equation (10)
and taking the limits results in

Ĝ−(x f ,ω;xs) = R̂(xs,ω;xs) f̂1
+
(xs,ω)− f̂1

−
(xs,ω) , (15)

G−(x f , t;xs) = R(xs, t;xs)∗ f+1 (xs, t)− f−1 (xs, t) . (16)

The same procedure applied to the time reversed version of
f1, i.e., using the complex conjugate of equation (1), yields

Ĝ+(x f ,ω;xs) =−R̂(xs,ω;xs) f̂1
−∗

(xs,ω)+ f̂1
+∗

(xs,ω) , (17)

G+(x f , t;xs) =−R(xs, t;xs)∗ f−1 (xs,−t)+ f+1 (xs,−t) . (18)

Expressions (15) and (17), or (16) and (18) in the time
domain, are called the coupled Marchenko equations
(Wapenaar et al., 2013).

Broggini and Snieder’s method

On the basis of the work of Rose (2002), Broggini and
Snieder (2012) developed an iterative scheme that focuses
an initial pulse at a prescribed time t f using data recorded
with a zero-offset configuration. To graphically demonstrate
the underlying operations, we use the model depicted in
Figure 2 with the leftmost focusing point.
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Figure 3: Broggini and Snieder’s Algorithm: The Gaussian
wavelet Q0(t) = Q(t) simulating a δ -pulse used at the
first iteration (dashed green line) and the corresponding
recorded seismogram S0(xs, t;xs) (solid black line).

The procedure proposed by Rose (2002) consists in
first injecting at xs a known pulse Q0(t) = q(t) ≡ d

dt δ (t +
t f )δ (x−xs) shifted to −t f and record the medium response
S0(xs, t;xs). Because the solution of the one dimensional
wave equation integrates the initial wavelet (since the
Green’s function is a Heaviside function), by injecting
d
dt Q(t) the recorded wavefield will have the desired wavelet
shape Q(t). Second, to obtain the reflection response
R0(xs, t;xs) simply take the difference between the recorded
wavefield at xs and the injected pulse,

R0(xs, t;xs) = S0(xs, t;xs)−Q0(t) . (19)

(Figure 3) shows this result for a model with two high-
velocity zones between xs and x f . R0(xs, t;xs) can be
replaced by a recorded reflection response, R(xs, t;xs), if
available.

The third step consists of applying a window operator
H(t f −t) to the reflection response R0(xs, t;xs) and reversing
it in time. This time reversed version, called coda (Figure
4), is given by

coda0(t) = R0(xs,−t;xs)H(t f + t) . (20)

Next, the injected pulse is updated by taking the difference
between the initial wavelet Q0(t) and the coda coda0(t) to
produce the new wavelet Q1(t) (Figure 5). The procedure
starts then over by injecting d

dt Q1(t), recording the new
response R1(xs, t;xs), and calculating the new coda1(t). At
each iteration, Qk(t) is obtained by subtracting the coda
from Q0. The process continues iteratively k times until it
reaches convergence to obtain Qk(t).

Broggini and Snieder (2012) showed that G(x f ,w;xs) can
be obtained by convolving the original seismic reflection
response R(xs, t;xs) at xs with the injected wavelet Q(t)
as described above, i.e., after k iterations, u(xs, t) =
R(xs, t;xs) ∗t Qk(t) (Figure 6), and adding its time reversed
version u(xs,−t) (Figure 7a). Figure 6 shows the result
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Figure 4: Broggini and Snieder’s Algorithm: Time reversed
and windowed reflection response at the first iteration,
coda0(t), obtained according to equation (20).
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Figure 5: Wavelet Q1(t) after first iteration update.

of this procedure after four iterations. The algorithm is
summarized in Table 1.

Note that the redatumed Green’s function in Figure 7a has
a higher amplitude than the reference solution calculated
with an FD scheme. This is due to the transmission
coefficients that exists between xs and x f that are not
captured in the solution. Brackenhoff (2016) addresses this
problem in his work.

van der Neut’s method

For the coupled Marchenko equations, van der Neut et al.
(2015) developed the following iterative scheme: First,
think of f+1 as composed of a initial unitary direct pulse fd
and a following coda corresponding to equation (2), i.e.,

f+1 = fd + fcoda . (21)

Note again that the designed focusing function is subject
to some constraints: fd has to pass at xs at a specified
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Broggini and Snieder’s Algorithm

1. k← 0

2. Qk(t)← δ (t + t f )

3. Inject Qk and record Sk at xs

4. Rk← Sk−Qk

5. codak← Rk(−t)H(t f + t)

6. Qk+1(t)← Q0− codak

7. k← k+1;

8. If Qk does not satisfy convergence criteria:
Goto step 3

9. After convergence:
Inject Qk and record u(t) = Sk(t)

10. Gk← u(t)+u(−t)

Table 1: Broggini and Snieder’s Algorithm.

van der Neut’s Algorithm

1. fd(t)← δ (t + t f )

2. k← 0

3. f k
coda← 0

4. f+k
1 = fd + f k

coda

5. f−k
1 ←Θ{R∗ f+k

1 }

6. f+(k+1)
coda (xs,−t)←Θ{R∗ f−k

1 }

7. k← k+1;

8. If f+k
coda does not satisfy convergence criteria:

Goto step 4

9. After convergence:
G−k← R(t)∗ f+k

1 (t)− f−k
1 (t)

10. G+k←−R(t)∗ f−k
1 (−t)+ f+k

1 (−t)

11. Gk← G+k +G−k

Table 2: van der Neut’s Algorithm.
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Figure 6: Seismogram recorded after 4 interations, i.e.,
injecting d

dt Q3(t).

focusing time −t f so as to reach the focusing point x f at t =
0. Hence, without any knowledge of the velocity model, the
obtained Green’s function will be simulated at an unknown
position.

Consistent with the boundary conditions, design a window
operator Θ = H(t f − |t|), that preserves the field between
−t f and t f , and zeroes the field outside this interval.
Windowing f−1 , f+1 , and G results in

Θ{G}= 0 , (22)

Θ{ f+1 }= fcoda , (23)

Θ{ f−1 }= f−1 . (24)

It is important to recognize that there is no field registered
before t f at xs because the Green’s function localized at x f
is causal. Thus, masking the Green’s function with Θ gives
zero. On the other hand, the leftward propagating part of
f 1 exists only within the time window between −t f and t f ,
so that it is not affected by the masking.

The masking of f+1 in the prescribed two-way traveltime
window (−t f to t f ) is done in such a way that the direct
field fd is removed, but all primaries and multiples that
will possibly arrive at xs are preserved. Using this window
operator on the time domain coupled Marchenko equations
yields

Θ{R(xs, t;xs)∗ f+1 (xs, t)}= f−1 (xs, t) , (25)

Θ{R(xs, t;xs)∗ f−1 (xs,−t)}= f+coda(xs,−t) . (26)

The algorithm starts by setting f 0
coda = 0 and f 0

d = δ (c0(t +
t f )− |x− xs|) in the first iteration. The use of these initial
values in equation (25) yields f−0

1 , which, upon substitution
in equation (26), provides f 1

coda. This iterative process
can be repeated until it meets some convergence criteria.
Upon reaching convergence, G+ and G− are calculated by
equations (16) and (18). Figure 7b shows the complete
Green’s function obtained with this iterative scheme. The
algorithm is summarized in Table 2.

Numerical examples

Our numerical tests performed with the above described
algorithms demonstrated that the mentioned amplitude
discrepancy shown in Figure 7a between the result of
Broggini and Snieder’s algorithm (green dashed lines) and
the modeled Green’s function (solid black line) is intrinsic to
their procedure. At the second focusing point in the model
in Figure 2, which is not located in a region with c = c0, the
effect is even stronger (see Figure 8a). Brackenhoff (2016)
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(a) Numerical result using Broggini and Snieder’s iterative
algorithm.
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(b) Numerical result using van der Neut’s iterative algorithm
based on the coupled Marchenko equations.

Figure 7: Results for the first focusing time t f = 1.7 s
corresponding to x f = 3 km (left × in Figure 2).

explains this effect by incorrectly treated transmission
coefficients by these algorithms.

The agreement in Figures 7b and 8b between the
recovered Green’s functions using van der Neut’s algorithm
(solid red lines) and the modeled versions (dashed black
lines) is much better. This shows that the theoretical
derivations are consistent and that under the ideal
conditions simulated here, the true Green’s function for a
source at the focusing point is recovered by this algorithm.

Conclusions

In this work, we have investigated two well-known iterative
algorithms for solving the 1D Marchenko equation to
construct the Green’s function for a point source at an
arbitrary focusing point. Our careful implementations have
demonstrated that while kinematically equivalent, these
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(a) Numerical result using Broggini and Snieder’s iterative
algorithm.

−2 0 2 4 6

−2

0

2

4

6

Time (s)

A
m

p
lit

u
d
e

 

 
G

+
+G

−

FD Green

(b) Numerical result using van der Neut’s iterative
algorithm.

Figure 8: Results for the second focusing time t f = 2.5 s
corresponding to x f = 4.5 km (right × in Figure 2).

algorithms lead not to fully identical results. The algorithm
of Broggini and Snieder (2012) is somewhat faster than
the one of van der Neut et al. (2015), because the latter
needs two wavefield propagations per iteration instead of a
single one. However, it allows only the construction of the
complete Green’s function, where van der Neut’s algorithm
allows for the separate calculation of the up and downgoing
components.
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