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Abstract

Encoding techniques are powerful strategies to speed-
up seismic inversion processes based on full-waveform
inversion. In this work, we introduce a new simultaneous
sources encoding strategy for time domain full-waveform
inversion based on the phase rotation wavefield in the
time domain constructed with help of the Hilbert transform.
This encoding strategy consists in applying a random
phase rotation to each shot gather. In addition, we
combine our encoding scheme with restarted L-BFGS
scheme. We have tested our scheme using synthetic
data set from 2D SEG/EAGE overthrust model. In
our tests, we have compared the effectiveness of our
scheme with the conventional polarity encoding strategy.
In this comparison, our scheme has shown to be more
effective to mitigate the crosstalk noise than the polarity
encoding strategy. Furthermore, our scheme showed an
improvement of the convergence speed in comparison with
polarity encoding.

Introduction

In principle, seismic inversion processes based on full-
waveform seismic inversion (FWI) can recover quantitative
medium properties of the subsurface with high-resolution
(Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009).
However, these inversion processes are computationally
expensive (Krebs et al., 2009; Ben-Hadj-Ali et al., 2011;
Haffinger et al., 2013; da Costa et al., 2018), which limits
its application to realistic seismic inversion problems from
exploration seismology. In a standard gradient based FWI,
where the gradient of objective function is computed via
adjoint-state method (Plessix, 2006), the computational
cost, in term of time spent, is directly related to the number
of available sources (especially in the time domain),
because during the inversion process is required to perform
at least two modelling per iteration for each source.

In order to improve the computational speed of the gradient
based FWI, Krebs et al. (2009) proposed the encoded
simultaneous-source FWI, where the gradient of the
objective function is calculated for all shots simultaneously.
Indeed, this is a powerful strategy to speed-up the FWI,
because in this formulation the number of modelling
required to construct the gradient of the objective function
is reduced to two per iteration. However, a drawback

of this scheme is the crosstalk noise that arises from
the correlation of the forward- and backward- wavefields
from different shots. A way to attenuate these noise
is applying to each shot an operation called encoding
(Krebs et al., 2009). The encoding in the time domain,
in general, is formulated as a randomly polarity scheme
(so-called polarity encoding technique), where each shot is
weighted by a polarity number +1 or −1 chosen randomly
(Krebs et al., 2009; Rao and Wang, 2017). In the
frequency domain, the encoding is formulated as a phase-
shift scheme (so-called phase encoding technique), where
a phase-shift, with a random or deterministic choice of
phases, is applied to each shot (Romero et al., 2000; Jing
et al., 2000; Ben-Hadj-Ali et al., 2009; Ben-Hadj-Ali et al.,
2011). For frequency domain FWI, the random phase
encoding has been demonstrated to be more effective
than the deterministic phase encoding (Ben-Hadj-Ali et al.,
2009).

In the same way as the frequency domain, in the time
domain a phase rotation can be applied using the concepts
of analytic signal and Hilbert transform. Thus, we proposed
an alternative encoding strategy where each shot is
encoded by applying a phase rotation in the calculation of
gradient of the cost function. The phase angle for each
shot is chosen randomly. We combined this codification
strategy with the restarted L-BFGS method for quasi-
Newton inversion showed in Rao and Wang (2017) and
Rao et al. (2019).

Methodology

Phase Rotation

The phase rotation for a time series can be calculated
using the concept of analytic signal, that is widely
used in seismic processing and interpretation to obtain
mathematical attributes of seismic traces as instantaneous
phase and the signal envelope (Taner et al., 1979; Wang,
2007; Barnes, 2007). According to Bracewell (1999); Taner
et al. (1979) a real times series x(t) can be interpreted as
the real part of a complex function called the analytic signal
F(t) defined as

F(t) = x(t)+ ıHilb{x(t)} (1)

Where Hilb{} is the Hilbert transform of x(t), defined as

Hilb{x(t)}= P.V.
1
π

∫
∞

−∞

x(t ′)
t ′− t

dt ′ (2)

where P.V. is the Cauchy principal value of the convolutional
integral. Numerically is more convenient to calculate the
hilbert transform using the definition in terms of Fourier
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transform

Hilb(x(t)) = F−1{−ıSign(ω)F{x(t)}} (3)

where ω is the angular frequency, F is the Fourier
transform operator and Sign() is the signal function. The
Hilbert transform is commonly interpreted as a 90◦ phase
rotation of the original time series. At the same time, the
original time series is referred as the 0◦ version. Hence,
using the real and imaginary parts of analytic signal F(t), a
ϕ degrees phase rotation xrot(t ;ϕ) of the time series x(t) is
calculated as (See equation A-1 from Barnes, 2007)

xrot(t ;ϕ) = x(t)cos(ϕ)+Hilb{x(t)}sin(ϕ) (4)

Encoding Strategies Tests

In order to show the performance of the phase rotation
encoding we tested two encoding strategies. In the first
one, we applied a phase rotation to each shot. The shot
traces were rotated using the equation (4) choosing the
angle ϕ between 0 and π. All the traces of a shot were
rotated with the same angle but the angle is different for all
shots and was chosen randomly. The phase rotation using
the angles 0 and π is equivalent to the two values +1 and
−1 of the polarity encoding strategy. This strategy aimed
to sweep all the phase angles between the values of the
polarity strategy. The second strategy tested is the polarity
encoding mentioned above (Krebs et al., 2009; Rao and
Wang, 2017).

As mentioned in the introduction, our encoding strategy
is combined with the restarted L-BFGS method described
in Rao and Wang (2017). This strategy uses the
conventional L-BFGS quasi-Newton method (Nocedal and
Wright, 2006), applying an initial encoding for the shots
and keeping this codification for m iterations. After this, the
codification is changed until reaching l iterations, where the
L-BFGS is restarted, that is, keeping just the last gradient
to avoid the initial linear search. This procedure was
repeated until reach convergence. According to Rao and
Wang (2017), this strategy increases the randomness of
encoding and, therefore attenuates the crosstalk.

For the two strategies, phase rotation and polarity encoding
the cost function Φ was calculated as

Φ =
1
2

∥∥∥∥∥Dsim−
Ns

∑
i=1

dobs(i)

∥∥∥∥∥
2

2

(5)

where dobs(i) is the observed data for shot i and Ns is
the number of sources. All the observed shots must be
stacked to be compared with the simulated data. Dsim is the
simulated super-shot were all the shots were propagated at
the same time, i.e, is the solution at the receiver positions
of the equation

∇
2Dsim−

1
c2(~x)

∂ 2Dsim

∂ t2 =
Ns

∑
i=1

s(i, t) (6)

where s(i, t) is the source wavelet at the position of shot
i. The cost function does not depend on the encoding
strategy, which implies that the evolution of cost function
is comparable for the different encoding strategies.

Encoded Gradient Calculation

In the conventional FWI, the gradient of cost function using
Ns sources is calculated as (Plessix, 2006)

∇Φ =−
Ns

∑
i=1

∫ T

0
Ri(~x)

∂ 2Pi(~x)
∂ t2 dt (7)

Where Pi is the forward propagated wavefield of a synthetic
wavelet at shot position i, Ri is the back propagated
wavefield where the source term is the difference between
simulated and original shots and T is the record length.
Figure 1(e) shows an example of conventional gradient
calculated with equation (7) for the model of Figure 2(b).
For encoded simultaneous shots FWI, the gradient is
calculated as

∇Φ =−
∫ T

0
Rsim(~x)

∂ 2Psim(~x)
∂ t2 dt (8)

where Psim is calculated in the same way as equation (6)
but the source term is encoded, that means, Psim is solution
of equation

∇
2Psim−

1
c2(~x)

∂ 2Psim

∂ t2 =
Ns

∑
i=1

ei⊗ s(i, t) (9)

The notation in equation (9) is similar to the used in Krebs
et al. (2009) but the operation ei⊗ is not a convolution but
is any operation on the time series, in this case, a phase
rotation. The backpropagated wavefield is calculated
solving the equation

∇
2Rsim−

1
c2(~x)

∂ 2Rsim

∂ t2 = Psim(−t)−
Ns

∑
i=1

e∗i ⊗dobs(i,−t) (10)

the −t in the argument on the source term means that the
wavefield is back-propagated. The ∗ on encoding operator
means that this operation is back-propagated also. Using
the fact that wave equation is linear, the equation (8) can
be expressed as

∇Φ = −
Ns

∑
i=1

∫ T

0
e∗i ⊗Ri(~x)

∂ 2ei⊗Pi(~x)
∂ t2 dt

−
Ns

∑
i 6= j

∫ T

0
e∗i ⊗Ri(~x)

∂ 2e j⊗Pj(~x)
∂ t2 dt (11)

The first term are the correlation of the forward and
backpropagated wavefields coming from the same source,
whereas the second term is the crosscorrelation of forward
and backpropagated wavefields coming from different
sources, i.e., the crosstalk noise. For any encoding
strategy works, the first term of the equation (11), must
recover the conventional gradient, that means, it must be
equal to equation (7). For the polarity encoding is easy
to notice that the first term of equation (11) recovers the
equation (7), nevertheless, for phase rotation encoding this
is not straightforward.

To show that phase rotation also recovers the conventional
gradient, we calculated numerically the gradient for one

Sixteenth International Congress of the Brazilian Geophysical Society



DUARTE ET AL. 3

shot using the equation (8) applying a 0◦ phase rotation
and a 53◦ phase rotation that are showed in Figures 1(a)
and 1(b) respectively. For one shot the crosstalk term does
not exist and, therefore, the gradient calculated by equation
8 is equivalent to the conventional gradient for this case.
The result is the same for the two phase angle tested and,
therefore, the first term of equation (11) reproduces the
conventional gradient when phase rotation is used. The
53◦ phase was chosen only as example, but the result is
the same for any angle. One possible explanation for this
is, that in the first term of equation (11), the rotation done
on the forward wavefield is compensated by the rotation of
the backpropagated wavefield.

Figures 1(c) and 1(d) showed the simultaneous encoded
gradients for polarity encoding and phase rotation encoding
respectively. It is noted that the gradient for phase
rotation encoding has less crosstalk noise and shows
more structures than the gradient corresponding to polarity
encoding. An alternative way to show that the first term
of (11) recovers the conventional gradient for polarity
encoding is substracting the gradients of Figures 1(d) and
1(e). The result of this substraction is showed in Figure 1(f).
We noted that the result of substraction only has crosstalk
noise because it does not show any structure present on
the conventional gradient.

Numerical Experiments

To illustrate the efficiency of the proposed methodology
we used a synthetic dataset model, a 2D version of the
SEG/EAGE Overthrust model, Figure 2(a). This model has
401 cells and 98 cells along the horizontal and vertical
directions. The distance between cells was h = 50 m.
The observed and simulated data was calculated using
the acoustic wave equation, employing a finite difference
with a fourth order Laplacian and second order in time
derivative together with a CPML absorbing boundary layer
(Komatitsch and Martin, 2007; Pasalic and McGarry, 2010).
The absorbing layer was applied at all sides of the model
using a 30 cells width.

The source signature was a Ricker wavelet with a peak
frequency of f0 = 6 Hz. We employed 201 shots at the
surface with 1500 samples and the time sample interval
0.004s. The receivers were positioned at the surface, one
for each model column. The initial model (Figure 2(b))
was a smoothed version of the real model. To smooth
the velocity model we calculated the average value of the
31× 21 submatrix centered at each cell. We simulated a
water layer in the first five rows of the model. These five
rows were copied to the initial model, and the gradient
was zeroed for these rows. This was done to avoid high
amplitudes of the gradient close to the source positions.
The parameters for restarted L-BFGS were m = 2 and l = 5
for all the numerical experiments.

The inverted models after 75 iterations are shown in
Figures 2(c) and 2(d) for polarity and phase rotation
encoding respectively. We notice that, at this intermediate
phase of the inversion, the crosstalk noise is more
mitigated using the rotation phase than in the polarity
encoding. The final inverted models after 200 iterations
are shown in figures 2(e) and 2(f) for polarity and
phase rotation encoding respectively. We achieved an
improvement in the definition of some events at the sides
of the model, and the deepest part of the model below

4 Km depth. Figure 3 shows the cost function evolution
versus the iterations for the two encoding strategies. The
phase rotation encoding showed a faster convergence
when compared with the polarity encoding.

Our results show that phase rotation encoding achieved
similar inversion performance than polarity encoding but
using only half of the iterations. Line searches were not
carried out between iterations because, as explained in
Nocedal and Wright (2006), the secant equation for the
L-BFGS method scales the gradient in such a way that
the step-length could be set up as 1 for all iterations.
This is the reason for the local peaks in the cost function
plot. One drawback of our method is the following: to
perform the phase rotation it is necessary to calculate
2Ns(Nr + 1) Fourier transforms per iteration (Nr is the
number of receivers). In our numerical experiments, the
computational cost per iteration of phase rotation encoding
was approximately 1.5 times the cost of gradient for polarity
encoding. Nevertheless, the speed of convergence of
phase rotation encoding compensated this extra time.

Conclusions

We proposed an alternative encoding strategy for
calculation of gradient in the FWI time domain using
simultaneous shots by applying a phase rotation to each
shot of the survey. Our encoding methodology together to
the restarted L-BFGS technique showed an improvement
of the inversion when compared with the standard polarity
strategy. The cost function of encoding strategy decreases
faster than the standard encoding and the crosstalk noise
attenuation has improved at the deepest part of the model.
The behaviour of cost function shows that, with phase
rotation encoding, we obtained a better performance than
polarity encoding using fewer iterations.
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Figure 1: (a) Gradient Calculation for one shot using a 0◦ phase rotation (No rotated). (b) same as (a) but using a 53◦ phase
rotation. (c) and (d) Gradient for simultaneous shots using polarity encoding and phase rotation encoding. (e) Conventional
gradient and (f) Crosstalk noise for phase rotation encoding.
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Figure 2: (a) 2D SEG/EAGE Overthrust Model, (b) Initial model. Partially inverted models after 75 iterations using (c) polarity
encoding and (d) phase rotation encoding. Final inverted models after 200 iterations using (e) polarity encoding and (f) phase
rotation encoding.
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