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Abstract

Joint Migration Inversion (JMI) is an independent
approach to solve the seismic inverse problem,
based on decoupled imaging and inversion operators.
Here, we review the background equations in their
continuous form. We then proceed to test the
JMI methodology using the multiparameter Gauss-
Newton method to estimate simultaneously image and
slowness updates, and we compare the results to
those of the conventionally used steepest-descent
method. Our numerical results show that the Gauss-
Newton method can provide velocity models with
improved resolution, albeit at a higher cost. These
results demonstrate that the JMI implementation under
the assumptions discussed here can provide a good
depth migrated image and a satisfying initial velocity
model for a subsequent Full Waveform Inversion.

Introduction

Joint Migration Inversion (JMI) has been proposed as a
new approach to the seismic inverse problem (Berkhout,
2014). The method’s distinguishing characteristics are the
ability to reproduce intrabed multiples even in a smooth
velocity model and a computational cost below finite
difference based methods.

JMI is built upon the seismic wavefield decomposition into
its downgoing and upgoing components. This approach
intrinsically decouples high spatial frequency information,
represented by scattering operators, from low spatial
frequency information represented by the velocity model
(Wapenaar, 1996).

By means of the migration part, the velocity model
allows for the positioning of events. In turn, from the
resulting image, scattering operators are built to update
the velocity model. Since the methodology deals mainly
with reflections below the critical angle, it is approximately
analogous to Reflection Waveform Inversion (Xu et al.,
2012).

Because of the higher cost of wave-based methods, ray-
based tomography methods are still routinely used in oil
and gas exploration (Jones, 2010). In terms of cost
and quality, JMI offers an intermediate solution between

ray-based methods and Full Waveform Inversion (FWI),
accounting for finite frequency effects, but not demanding
event picking and with lower computational cost than finite
difference solutions of the wave equation.

This work aims to derive the JMI continuous equations and
solve the inverse problem using the Gauss-Newton method
to estimate simultaneously image and slowness updates.
Usually, the methodology is presented in the discrete
matrix form, and the parameter updating is done by
alternating between imaging and tomography (Masaya and
Verschuur, 2018). In the continuous form, the equations
may be slightly more cumbersome, but this helps to state
the method and its assumptions as clear as possible.
The results of our implementation indicate that JMI is a
promising methodology for velocity model building, which
may assist in reducing the number of necessary iterations
in a subsequent FWI application.

Forward problem

Differential form

Consider the acoustic wave equation decoupled into
its downgoing and upgoing components. We present
the correspondent equations for a continuous model.
According to Ursin et al. (2012), the down/upgoing
wavefields P±(x,ω) in the frequency-space domain (ω−x)
for a downgoing volumetric source S+ = S+(xs,ω) must
satisfy

∂P+

∂ z
= iH1(x,ω)P+(x,ω)+R−(x,ω)P−(x,ω)︸ ︷︷ ︸

secondary source

+S+ , (1)

∂P−

∂ z
=−iH1(x,ω)P−(x,ω)+R+(x,ω)P+(x,ω)︸ ︷︷ ︸

secondary source

, (2)

where i is the imaginary unit; x = (x,z) is the coordinate
vector, with x indicating the horizontal coordinate and z the
depth coordinate increasing downward; xs is the source
position, and ω is the angular frequency. Moreover, H1 is
the square-root operator and R is the reflection operator,
with the superscript + indicating incidence from above
at some model position x and − denotes incidence from
below. Note that as a consequence of the directional
decoupling, horizontally propagating waves are not defined
(Ursin et al., 2012).

The square-root operator H1 is defined in such a way that
its double application results in the Helmholtz operator H2,
i.e.,

H2(x,ω) = H1(x,ω)H1(x,ω) , (3)

where the Helmholtz operator, related to the 2D acoustic
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wave equation, is defined as

H2(x,ω) = ω
2
σ

2(x)+
∂

∂x

(
1
ρ

∂

∂x
·
)
. (4)

Here, σ is the slowness (velocity inverse) and ρ is density.

In a homogeneous model, the square-root operator in the
frequency-wavenumber domain is equivalent to the vertical
wavenumber

kz = ω

√
σ2− k2

x/ω2 , (5)

where kx is the horizontal wavenumber. The square-
root operator and the scattering operators represent
convolutions in the horizontal coordinate, viz.,(

H1P±
)
(x,ω) =

∫
∞

−∞

H1(x− x′,z,ω,σ(x′,z))P±(x′,z,ω)dx′ ,

(6)

(R+P+)(x,ω) =
∫

∞

−∞

R+(x− x′,z,ω)P+(x′,z,ω)dx′ , (7)

where H1 and R+ are the kernels of the square-root
and reflection operator, respectively. A detailed discussion
about the square-root operator can be found in Grimbergen
et al. (1998). For the purpose of this work, it will not be
necessary to specify this operator explicitly.

Integral form

The downgoing Green’s function G+ for our modeling
equations, in a medium without scattering, must satisfy

∂G+

∂ z
(x;xs,ω) = iH1(x,ω)G+(x;xs,ω)+δ (x−xs)δ (t) , (8)

The upgoing analogous, G−, is obtained with a change of
signal of the imaginary unit or equivalently

G−(xs;x,ω) = [G+(x;xs,ω)]† , (9)

where † denotes the adjoint operator.

Relating equations (1) and (2) with the correspondent
Green’s function the following integral representation is
obtained (Wapenaar, 1996)

P±(x,z′,ω) =
∫

∞

−∞

G±(x,z′;x,z,ω)P±(x,z,ω)dx , (10)

or in compact notation, which considers the integral
representation and the convolution over the lateral
coordinate implicitly,

P±(x′,ω) = G±(x′;x,ω)P±(x,ω) . (11)

In the same notation, and for brevity displaying only the z
dependence, the modeling equations can be written as

P+(z′− ε) = G+(z′;z)Q+(z+ ε)+G+(z′;zs)S+(zs + ε) , (12)

P−(z′+ ε) = G−(z′;z)Q−(z− ε) , (13)

where a small vertical displacement ε was introduced to
indicate the relative position of each wavefield with respect
to its incidence point. Moreover, symbols

Q± = R∓(x,ω)P∓(x,ω) , (14)

denote the secondary sources for each propagation
direction.

Recursive modeling and further assumptions

Note that equations (12) and (13) account for full scattering.
It is possible to obtain a recursive linearized relation
between the wavefields that accounts for higher order
scattering using a procedure similar to the Born expansion,
commonly applied to the two-way wave equation. This can
be done by defining two wavefields, one in a model without
scattering and another in a model with the same kinematic
characteristics but including scatterers. Following this
procedure, we obtain the recursive equations

P+
j+1(z

′) = G+(z′;z)
[
R−(z)P−j (z)+P+

0 (z)
]

︸ ︷︷ ︸
Q+

j+1

, (15)

P−j+1(z
′) = G−(z′;z)

[
R+(z)P+

j+1(z)
]

︸ ︷︷ ︸
Q−j+1

, (16)

where the subscript j indicates the scattering order, with
the zero-order terms given by

P+
0 (z′) = G+(z′;zs)S+(zs) , (17)

P−0 (z′) = G(z′;z)R+(z)P+
0 (z) . (18)

In this way, P+
0 denotes the downgoing direct wave, P−0

represents the upgoing waves reflected once, P+
1 are

all twice reflected downgoing waves, and P−1 stands for
upgoing waves that bounced three times, and so on. This
recursive modeling procedure is closely related to the
work of Bremmer (1951). Note that the only necessary
information to account for higher-order scattering at
iteration j+1 is the source wavefield S+ and the downgoing
wavefield from the last iteration P−j . To simplify the
presentation, we assumed a 2D acoustic model, but the
extension to 3D is straightforward.

Still, for simplicity, we additionally assume the density to be
constant, medium parameters to be locally homogeneous,
and that the scattering operators/coefficients are angle
independent. This last assumption leads to scattering
operators that are independent of frequency and allows
to substitute the convolution in equation (7) by a direct
multiplication (de Bruin et al., 1990). Additionally, the
following relations hold (Berkhout, 2014) for an acoustic
model:

T+ = I +R+ , (19)

R− =−R+ , (20)

T− = I−R+ , (21)

where I is the identity operator. The transmission
effects are introduced during the discretization process.
Concerning propagation, the locality assumption allows
us to approximately implement the Green’s function for
laterally varying models using the approach of Thorbecke
et al. (2004). Under similar assumptions, any other one-
way extrapolation technique can be used.

Inverse problem

Lagrange multipliers

Here we are interested in estimating the reflection
coefficient R+ and the logarithm, σL, of slowness σ , i.e.,
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σL = ln(σ). After inversion of these parameters, the other
scattering coefficients are estimated using equations (19),
(20), and (21). Considering the regular least-squares misfit
function for a single frequency and a single shot gather, we
define the following Lagrangian function

L(P−,R+,σL,µ) =
1
2

f︷ ︸︸ ︷
‖d−−S −P−‖2

2

+ℜ


〈

∂P−

∂ z
+ iH1P−−R+P+︸ ︷︷ ︸
F(P−,R+,σL)

, µ

〉
(22)

where µ is a Lagrange multiplier or adjoint variable; S −

samples the wavefield at the receiver positions; d− is the
upgoing measured data; ‖.‖2

2 denotes the squared L2 norm;
ℜ{.} denotes the real-part operator; and 〈., .〉 denotes dot
product.

At this point, it is important to emphasize that it would
be more complete to include the downgoing wavefield,
the so-called source-side wavefield, and formulate all the
scattering operators as a function of R+. These extensions
are left for future work.

Considering that P̂− satisfies equation (2), we conclude
that

L(P̂−,R+,σL,µ) =
1
2
‖d−−S −P̂−‖2

2 . (23)

Fixing σL and taking the derivative of equation (22) with
respect to R+ yields

ℜ

{[
∂F(P̂−,R+,σL)

∂R+

]†

µ

}
+

∂L(P̂−,R+,σL,µ)

∂P−
∂ P̂−

∂R+

=
∂ f (R+,σL)

∂R+
, (24)

where

∂F(P̂−,R+,σL)

∂R+
=

∂Q−

∂R+
,

= P+ . (25)

Defining the adjoint state µ̂ such that

∂L(P̂−,R+,σL, µ̂)

∂P−
= 0 , (26)

we conclude that µ̂ must satisfy

∂ µ̂

∂ z
− iH1µ̂ = [S −]†(d−−S −P̂−) , (27)

and the imaging gradient is given by

∂ f (R+,σL)

∂R+
= ℜ

{[
P+
]︸ ︷︷ ︸

JR

†
µ̂
}
. (28)

In an analogous way, now fixing R+ and derivating equation
(22) with respect to σL, we find

ℜ

{[
∂F(P̂−,R+,σL)

∂σL

]†

µ

}
+

∂L(P̂−,R−,σL)

∂P−
∂ P̂−

∂σL
=

∂ f
∂σL

.

(29)

Using the same strategy for the adjoint state µ̂, equation
27, and with

∂F(P̂−,R+,σL)

∂σL
= i

∂H1

∂σL
P̂− , (30)

we find the tomography gradient to be given by

∂ f (R+,σL)

∂σL
= ℜ


[

i
∂H1

∂σL
P̂−
]

︸ ︷︷ ︸
JσL

†
µ̂

 . (31)

Observe that the forward-modeling partial derivatives with
respect to R+ and σL are fully decoupled (see JR given
by equation 25 and JσL given by equation 30). The
former depends on the downgoing wavefield, and the latter
requires the upgoing wavefield.

Gauss-Newton method

The Gauss-Newton method is an approximate approach
to account for the effect of the inverse Hessian on the
gradient. Some benefits of the method are its capability to
focus the gradient by reducing band-limitation effects from
acquisition and consequently speed up the convergence of
the inversion process (Pratt et al., 1998). Adding to that, the
Gauss-Newton approach can reduce cross-talk between
parameter classes in multiparameter inversion (Pan et al.,
2018). Using the LSMR algorithm (Fong and Saunders,
2011), we implemented the multiparameter Gauss-Newton
method by solving the least-squares problem

min
∆σLk ,∆R+

k

∥∥∥∥S − [JσL JR
][∆σLk

∆R+
k

]
− (d−−S −P̂−)

∥∥∥∥2

2
, (32)

where ∆σLk and ∆R+
k are the update directions at iteration

k. The parameters are updated according to σLk+1 = σLk +

αk∆σLk and R+
k+1 = R+

k + βk∆R+
k . The step-lengths are

calculated with the subspace method (Kennett et al., 1988).
During the iterative solution of equation (32) using LSMR,
at each iteration, one linearized modeling and one adjoint
modeling are performed. We compare the LSMR results
to those obtained using the steepest-descent method
by alternating between imaging and tomography. The
steepest-descent directions were obtained from equations
28 and 31, normalized by the corresponding squared
wavefield Jacobian stacked over shots and frequencies,
which corresponds to the deconvolution imaging condition.

Numerical tests

We applied JMI to two synthetic data sets. One model is
similar to the one used in Masaya and Verschuur (2018),
consisting of a lens and fine layering at the bottom. The
second model is the modified Marmousi2 (Pan et al., 2018).
Both synthetic data sets were generated with a 20 Hz
Ricker wavelet. The same algorithm was used for modeling
and inversion with a multiscale approach. In the discussion
below, when we indicate the Gauss-Newton computational
cost, we consider that one linearized modeling has
approximately the same computational cost of one adjoint
modeling.

Sixteenth International Congress of the Brazilian Geophysical Society



GAUSS-NEWTON JMI 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Lateral posit ion (km )

0.0

0.2

0.4

0.6

D
e

p
th

 (
k

m
)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6
km /s

Figure 1: Lens model: Initial velocity model for JMI.

Lens model

The acquisition geometry for the first test consisted of 40
shots spaced by 50 m and receivers at all surface grid
points. The vertical and lateral spatial sampling of the
model was 12.5 m. Figure 1 shows the initial velocity model
for the first test, a linear vertical gradient model. The initial
image was a null array. Figures 2(a) and 2(b) show the
exact velocity and image, respectively.

For the inversion, the frequency stages were divided into
four equal intervals with fixed minimum frequency. The
minimum frequency was set to the first sample after 0 Hz
and the starting maximum frequency was 15 Hz. The
number of iterations per stage was set to a maximum of
20 and a jump to a new stage was imposed if the relative
decrease of the objective function was less than 1%.

Overall, the results were acceptably close to the exact
model (see Figure 2). The Gauss-Newton solution,
Figure 2(e), exhibits a slightly higher resolution and more
precision in reproducing the length of the lens than the
steepest-descent result, Figure 2(c). However, the fine
layers below the lens show a slightly stronger pull-up in
the Gauss-Newton image, Figure 2(f) than in the steepest-
descent image, Figure 2(d). Other indicators for the quality
of the optimization strategies are the data residuals and
model residuals. Figure 3 shows these indicators in plots
over iterations. The data and model residuals show that
the Gauss-Newton method provided model updates which
converged considerably faster towards the exact velocity.
The average number of inner iterations in the Gauss-
Newton approach was 4.3. Therefore, the computational
cost of each iteration was approximately 8.6 times that of
the steepest-descent method.

Marmousi2 model

Figures 4 to 6 show the same sequence of figures
for the Marmousi2 model. Figure 4 depicts the initial
velocity model. The initial image was again a null array.
Figures 5(a) and 5(b) show the exact velocity and image,
respectively. In this case, the vertical and lateral spatial
sampling was 5 m. The acquisition was made with
22 shots spaced by 150 m and receivers at all surface
grid points. The frequency stages were divided into
four intervals with an increment of 10 Hz, and the first
stage was defined as 0-10 Hz. The maximum number
of iterations per stage was set to 20, skipping to a new
stage if the relative decrease of the objective function was
less than 5%. Both the steepest-descent and Gauss-
Newton methods, Figures 5(c) and 5(e), were capable of
introducing several details into the initial velocity model,
Figure 4. The steepest-descent result makes an overall

somewhat smoother impression than the Gauss-Newton
velocity model. Gauss-Newton converged slower in the first
stage than steepest descent but subsequently provided
a more significant decrease of the data/model residuals,
Figures 6(a) and 6(b). The resulting images, Figures 5(d)
and 5(f), exhibit approximately the same quality, with the
gas lens being visibly better resolved in the Gauss-Newton
image. The average number of inner iterations to solve
the Gauss-Newton approximation was 6.2. Therefore the
computational cost of each iteration was approximately
12.4 times that of steepest descent.

Conclusion

In this paper, we have studied joint migration/inversion
(JMI). Differently from what is usually done in the literature
on JMI, we have reviewed the continuous forms of the
differential and integral equations that form the background
of the JMI methodology. Considering the inverse problem,
in general, the JMI gradients are derived from the integral
equations after discretization. We obtained the gradients
using the original underlying differential equations together
with the continuous form of the Lagrange multipliers. Note
that transmission effects are not represented explicitly
in the adopted equations. These effects are introduced
during discretization to guarantee the wavefield continuity
between adjacent layers at boundaries. We have also
discussed the implementation of the multiparameter
Gauss-Newton method to simultaneously estimate
updates for the scattering operator and the medium
slowness. Our numerical tests on two synthetic models of
different degrees of geologic complexity indicate that the
computationally more expensive Gauss-Newton method
can provide higher resolution in the resulting velocity
models than the steepest-descent method. The quality
of the estimated images turned out to be somewhat
independent of the tested optimization algorithm. In
conclusion, JMI is a promising methodology for imaging
and velocity model building. However, the assumptions
considered here, mainly the angle independence of the
scattering operators, should be removed in order to have
a method capable of dealing with real data. Overall, the
obtained velocity models seem to be of sufficient quality to
serve as initial models for a subsequent FWI.
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Figure 2: Results from the Lens model. (a) Exact velocity model; (b) Exact image. Results from tomography with steepest
descent: (c) Velocity; (d) Image. Results from tomography with Gauss-Newton: (e) Velocity; (f) Image.
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Figure 3: Results from the Lens model, residual over iterations. (a) Data residual; (b) Model residual.
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Figure 4: Marmousi2 model: Initial velocity model for JMI.
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Figure 5: Results from the Marmousi2 model. (a) Exact velocity model; (b) Exact image. Results from tomography with steepest
descent: (c) Velocity; (d) Image. Results from tomography with Gauss-Newton: (e) Velocity; (f) Image.

0 5 10 15 20 25

Num ber of iterat ions

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

L
o

g
( 

D
a

ta
 r

e
s
id

u
a

l 
n

o
rm

)

Steepest  descent

Gauss-Newton

(a)

0 5 10 15 20 25

Num ber of iterat ions

11.40

11.42

11.44

11.46

11.48

11.50

11.52

L
o

g
(M

o
d

e
l 

re
s
id

u
a

l 
n

o
rm

)

Steepest  descent

Gauss-Newton

(b)

Figure 6: Results from the Marmousi2 model, residual over iterations. (a) Data residual; (b) Model residual.
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