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Abstract   

Accurate permeability prediction is crucial in reservoir 
characterization as well in determining fluid flow in porous 
media, which may optimize the production of the 
field. Moreover, reservoir characterization associates 
knowledge textural and mineralogical of the rock 
characteristics, in addition to geometric properties of the 
porous space.  
This work focuses on the analyses of the influence of 
pore structure parameters on absolute permeability 
employing the integrated experimental data analysis for 
providing empirical models that comprise those 
properties. The results indicated a link between pore 
properties to predict the absolute permeability through 
multiple linear regression (MLR) methodology.  

Introduction 

Carbonate rocks exhibit complex petrophysical behavior 
related to their complex pore geometry and a broad range 
of pore size distribution. Therefore, the characterization of 
petrophysical properties of carbonate rocks remains 
challenging, since there are not universally applicable to 
petrophysical relationships. Porosity and pore size 
distributions (PSD) are indispensable proprieties, required 
to assess reservoir volume and evaluate the producibility, 
permeability prediction, and elastic property estimative 
(Saidian et al., 2014). Methods to measure these 
properties demand to capture an ample variation in pore 
sizes and shapes. It justifies the quantification of pore 
space with visual (DIA – 2D thin section and 3D µCT 
image; SEM – Scanning Electron Microscopy) and non-
visual techniques (N2 - Nitrogen Gas Adsorption, MIP, 
Helium Expansion, and Nuclear Magnetic Resonance 
(NMR)).  
In this study, we achieved an integrated analysis 
connecting MPI and 2D DIA to assess pore attributes of 
carbonates on core plugs and thin section scales. The 
intention of this experimental work was analyzing the 
influence of depositional textures and pore attributes on 
MPI responses to permeability prediction, employing 
convention statistical technique - Multiple Linear 
Regression (MLR). 

Materials and Method 

The dataset includes eight carbonate samples extracted 
from different USA outcrops: Edward Plateau (Edward 
Yellow - EYI/EYII; Edward White – EW, Desert Pink – 

DPI/DPII); Thornton (Silurian Dolomite - SD); Wisconsin 
(Wisconsin - W); Bedford (Indiana limestone – IL).  
Table 1 lists the mineral composition obtained from X-Ray 
Diffraction (XRD), Rietveld approach and X-Ray 
fluorescence (XRF), to the textural classification of the 
specimens.  
Figure 1 exhibits thin sections utilized in the petrographic 
characterization of the pore texture and 2D DIA for 
obtaining geometric parameters, such as perimeter over 
an area (POA) and dominant pore size (DPS). 

Table 1 - Core samples and their physical characteristics 

Rock Mineral (%) Texture Formation 

Edward Yellow 1 Calcite 99.7% 

Quartz 0.3% 

Packstone  Edwards 

Edward Yellow 2 

Desert Pink1 Calcite 99.8% 
Quartz 0.2% 

Crystalline 

Desert Pink 2 

Edward White Calcite 99.63% 
Quartz 0.37% 

Cemented 
Grainstone/
Packstone 

Austin Chalck Calcite 99.90%  
Quartz 0.09% 

Cemented 
Grainstone 

Silurian Dolomite Dolomite 100% Crystalline Thornton 

Indiana Limestone Calcite 99.85% 
Quartz 0.16% 

Cemented 
bioclastic 
grainstone 

Bedford 

Wisconsin Dolomite 83.3% 
Quartz 16.3% 
Calcite 0.7% 

Crystalline Wisconsin 

Figure 1 displays thin sections of rocks EY I/II, EW, W, 
DPI, and SD. These samples are mostly composed of the 
mineral calcite, except SD and W samples formed by 
more than 83% of dolomite.  

In these thin sections, according to Duhan classification: 

 - EY(I/II) - grainstone cemented, with cementation of 
calcitic origin already recrystallized and texture similar to 
that of the grain;  
- EW - bioclastic grainstone or packstone, predominating 
the moldic porosity; 
- W - crystalline carbonate that underwent diagenetic 
processes, caused by effects of temperature and 
pressure; 

- DP I - crystalline carbonate that presents calcite in high 
crystallization state, with the presence of micrites and 
micropores inside the micrite, and predominant cellular 
porosity;                                                                              
- SD - dolomite characterized by intercrystalline porosity. 
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Figure 1 - Illustrate the interdependence between pore 
throat radius and grain selection from rock’s thin sections 

Figure 2 displays the workflow implemented to 
permeability prediction from textural, mineralogical and 
pore structure characterization in carbonate core 
samples.  

 
Figure 2 – Workflow to predict permeability 

 
Porosity (ɸ) measurements at laboratory conditions were 
obtained by the helium gas expansion technique (API, 
1988), while gas permeability (KHe) using a PERG 200 
Permeameter, operating at a pressure of 2000 psi.  

Mercury Intrusion Porosimetry (MIP) was determined 
through Autopore IV 9520 from Micromeritics, operating 
with a pressure limit of 66,000 psi, Figure 3.  

Even though, some pore-sizes and shapes may be 
measured visually from 2D DIA, MIP has been indicated 
for characterizing pore features, pore throat size 
distributions in porous media from a micro-macro scale. 
 

 
Figure 3 – Autopore IV 9520 from Micromeritics operating 

with a pressure limit of 66,000 psi 

 

The Washburn equation provides a relationship between 
applied pressure and pore throat size (Leon, 1998), 
(Equation 1). 
 

  

𝐷 = −
4𝑐𝑜𝑠

𝑃
                                                            (1) 

                                                                                          

where  is the superficial mercury tension, D the 

corresponding pore throat size, and  the contact angle 
between the sample and the mercury, and P the applied  
pressure.  

The electrical resistivity of brine-saturated samples was 
acquired by Fluke Resistivimetry RCL PM6306 system to 
estimate by Archie equations the formation resistivity 
factor (FRF), tortuosity (τ) and cementation factor (m), 
Equations 2 and 3. The solution used to saturate samples 
had a concentration of 0.23 mol/L (13455 ppm) of NaCl.  

                                                  

𝐹𝑅𝐹 =
𝑅𝑜

𝑅𝑤
                                                                   (2)    

                                                              

 𝐹𝑅𝐹 = −𝑚
                                                               (3)  

here, m represents the slope of the linear trend of FRF x 
ɸ. Archie (1942) stated that m vary according to the 
degree of cementation of the rock. The tortuosity (τ) was 
defined as the ratio of the actual length of a flow path to 
the sample length, and it ranges according to the pore 
geometry, Φ and FRF, (Equation 4), (Azar, 2008). 

  FRF ∗ ɸ =  τ                                                           (4)                                                                           

Equation 5 illustrates the Kozeny-Carman modified equation 
allowed to estimate the permeability using the distribution of 

pores throat size from MIP to evaluate  occurrence, 
emphasizing the individual contribution of pore volume to the 
permeability. The geometric parameters (Sgvr and fps) were 
obtained by 2D DIA, according to Weger, (2009).  

kKC =
ɸ3

(1−ɸ)2 
[

1

fps τ Sgvr
2 ].                                       (5) 

Pore size distribution (PSD) is determined from mercury 
intrusion into pores as a function of the applied pressure, 
Equation 1.  

The volume of mercury penetration for each pressure is 
the difference between the respective cumulative 
intrusion volumes, as pressure increase, mercury 
penetrates the small pore throat. 

 In this study, we used Ahr (2005) to classify the pore size 
system determined by MIP into micropores (<0.5µm), 
mesopores (0.5 - 5µm), and macropores (>5µm).  
 
Dominant Pore Size (DPS) indicates the pore-size range 
that dominates the sample. In the dataset, this parameter 
varied between 3.83 - 40.14µm.  

Results 

Figure 1 shows the types of pores present in each sample 
studied. According to the classification of Ahr (2008) it is 
possible to visualize the specific porous structure 

composed of meso-macroporosity (meso-macro) and 

microporosity (micro). It is important to highlight that kKC 
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was estimated as a function of Svgr, , fps and  (Equation 
5).  
Perceive that the samples DP I/II and EY I/II, report less 
than 10% of the porous system composed by 
microporous, while other samples exhibit more 
occurrence of micropore (Figure 2). In these experiments, 
the maximum pressure achieved by the MIP equipment 
limited the measurement of the smallest pore size.  
Figure 3 displays the pore throat radius distribution versus 
porous volume fraction, highlighting that although the 
samples exhibit an expressive micropores occurrence, 
the most substantial pore volume fractions are associated 
with the meso-macropores.  

Figure 4 shows that samples with greatest τ value, micritic 
pores and diagenetic processes evidenced retention of 
mercury between the intrusion and extrusion curves.  

 

Figure  2 – The porous scale followed Ahr (2008) classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                       
Figure 3 – The pore throat radius (µm) in function of porous 
volume fraction (%), showing the pore size distribution and pore 
system characteristics of each specimen 

In opposition, its visible in the thin section (Figure 1) that 

DP sample, despite having a low value of , also displays 
retention of mercury inside pores; probably caused by the 
advanced recrystallization process, with the presence of 

micrite porosity (micrite) within the micrite matrix.  

Figure 4 - Mercury intrusion and extrusion data in a set of 
carbonate rocks. 

Figure 5 shows the correlation coefficient of the kHe with 

He is R
2
=0.695, while the correlation with only the 

fractions meso-macro and micro is R2=0.743 and R2=0.196, 
respectively. Even with such correlation coefficient, IL, SD 
and W samples are far away from the adjustment line, 
due to the crystalline texture. These samples show 

approximately more than 40% of micro, which is the 
case of the IL sample. The SD sample, although 
presenting 55% of φmicro and having 45% of φmeso-
marco is also a spurious point of the adjustment line, 

which may be justified by the higher  value. 

 

       𝑘𝑔  

Figure 5 - Croosplot between kHe x He; kHe x meso/macro; kHe x micro. 
The SD and W samples are spurious points, due to the 

crystalline texture. These samples show high micro content and 

high  value and diagenetic processes 

The estimation of kKC requires using  and fps; therefore, 
due to experimental limitations, only DP I, EY I/II, EW, W, 
and SD samples could be evaluated.  

Figure 6 (Top) shows the correlation of kKC x kHe 

considering the meso-macro fraction; (Bottom) displays kKC x 
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kHe and the micro fraction, presenting R
2
=0.81, e R

2
= 0.0, 

respectively. Despite the reduced number of samples, the 
quadratic adjustment increased, suggesting that the DP II 
sample taken from the fit exerted lower participation of 

micro, while DPI, EY(I/II), SD, EW, and W expressed 

higher participation of meso-macro.   

        

   

Figure 6 - shows the correlation of kKC x kHe take considering the 

meso-macro fraction; (Bottom) displays kKC x kHe and the micro 

fraction, presenting R
2
=0.81, e R

2
= 0.0, respectively. 

Once the correlations between kHe, kKC and meso-macro 

displayed proper adjustments (R2=0.81; Figure 6 (top)), it 
was performed a sensibility analysis through simple and 

multivariate linear regression of kHe x, meso-macro, , m, and 

DPS.  

Table 2 summarizes the results of the linear regression 

that allowed establish the link between kHe, m and 
geometric parameters. The parameter that most 

influenced this analysis was  with R
2
= 0.76, then kHe and 

meso-macro associated with  (Figure 7) described 76% of 
kHe through the MLR. 

The addition, the global parameters m, DPS and  did not 

interfere in the analysis of kHe x meso-macro, while DPS 

improved the fit from R
2
=0.64 to R

2
=0.71,  could 

increase the R2=0.76.  

The values of p-value (<0.05) and Statistical power (>0.8) 

are within the range expected for analysis of kHE x , meso-

macro x , showing a low probability that these errors were 
committed in Multivariate linear regression (MLR), 
according to Brooks and Barcikowski, (2012). 

 

 

 

 

Table 2 Summary of the MLR used for predicting permeability 

Method Equation R
2 

ajusted 
T - 
Stat 

P - 
value 

LR Log(k)= 0.39 + 0.07 macro/meso  

 

0.64 3.23 0,03 

MLR Log(k) = - 0.64 + 0.05 meso/macro + 
0.57 m 

 

0.64 1.85 0.16 

Log(k)= - 0.30 + 0.05 

𝛷𝑚eso/macro+ 0.02 DPS 

0.71 2.21 0.11 

Log(k) = - 0.40 + 0.08 meso/macro + 

0.074 

 

0.76 4.03 0.03 

 

Figure 7 exhibits a simulation employing the relationship 
empirical obtained for the carbonates in which was 
performed with the inclusion of the 03 samples with 
similar textures of the dataset used to propose such 
permeability prediction empirical equations.  

In this same figure, R
2
 fitted shows the difference 

between the kHe and kpredicted, and expresses the 

importance of the micro and  controlling the permeability. 

 

 

        

  

 

 

R
2

 
Fitted 

=
(𝑘𝐻𝑒− 𝑘𝑝𝑟𝑒𝑑)2

𝑘𝐻𝑒
                                         (6) 
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Figure 7 – Crossplots between kHe x kpredicted iIlustrates a test 
using the empirical relationships obtained for the carbonates, 
according to Table 2 

 

Conclusions 

In this work, we examined the relationship between 
permeability, porosity and pore attributes in a set of 
carbonate samples. 

Permeability prediction based only on linear dependence 
on porosity may not produce accurate results in those 
type of rocks, notably when are present different textures 
in the dataset.  

The addition of pore attributes as tortuosity may improve 
the accuracy of the permeability prediction, mainly of the 
limestones and dolomites textures that may exhibit great 
meso-macro porous content. 

Despite a reasonable adjustment between permeability 
prediction and experimental permeability, these 
measurements appear to exhibit dispersion values 
associated with an unusual percentage of micropores as 
consequence of mineral dissolution caused by diagenetic 
processes. 

A combination of porosity (macro-meso) and tortuosity 
could describe 75% of the experimental permeability, 
demonstrating its efficacy as controlling factors of the 
permeability. 
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