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Abstract  

 
Reflection full waveform inversion (RFWI) has become an 
effective tool to generate a low-wavenumber deep model 
update using reflection energy and to improve seismic 
imaging, especially in the subsalt area. However it is still 
a challenging inverse problem that suffers from local 
minima issues with conventional data fitting objective 
function. To tackle this problem, we propose a novel 
weighted traveltime based objective function that focuses 
on correcting the kinematic errors between the field and 
synthetic data and derive a new calculation of the 
gradient from forming an adjoint source that is less likely 
to cycle-skip, instead of simply minimizing the residual for 
data fitting objective function. We also proposed a 
preconditioned optimization scheme to mitigate the 
artifacts and improve convergence rate. The potential 
benefit of our proposed preconditioned RFWI is to 
generate a deeper reliable low-wavenumber update with 
reflected energy in absence of a good starting 
background model and ultra low frequencies. The 
inverted model from this approach will provide a better 
initial model for conventional FWI and/or RFWI with data 
fitting objective functions. The proposed workflow will 
eventually lead to high-fidelity earth model for subsalt 
imaging and interpretation. Our kinematic based objective 
function and optimization scheme are not limited to RFWI, 
it can be also applied to FWI and forms preconditioned 
FWI, depending on the type of wave propagation and the 
component of the model we are trying to invert for. 
 

Introduction 

 
Conventional full waveform inversion (FWI) has been an 
essential tool to generate high-fidelity earth models for 
better seismic imaging and structural interpretation. It 
solves a least squares problem by minimizing the misfit 
between the acquired and synthetic data (Lailly, 1983; 
Tarantola, 1984; Virieux and Operto, 2009). Considering 
the intrinsic problem for conventional FWI, the success in 
providing reliable background models heavily relies on the 
offset range and low frequency content in the acquired 
data. With limited offset range and low frequency data, 
reliable background updates are usually constrained by 
the depth penetration from refraction energy with only 
shallow improvements to the model. We have to make 
use of reflection data in order to obtain a deeper update 

for a smooth background model. However using reflection 
data with conventional FWI while missing low-
wavenumbers, only the high-wavenumbers of the target 
model can be inverted due to the dominant contribution 
from the migration kernel on the tomographic gradient. A 
different objective function that can separate the 
tomographic from the migration contribution is required for 
a successful RFWI. Various approaches have been 
proposed to benefit from the reflection energy. Van 
Leeuwen and Hermann (2013) introduced a penalized 
objective function for FWI with a reconstructed wavefield 
method. By reconstructing an extended source to 
generate reflections, the computed gradient with respect 
to velocity model results in a deeper low-wavenumber 
update with proper choice of penalty parameter (Wang et 
al., 2016). Alternatively, we can also use a density or 
reflectivity model to generate reflections, and then 
formulate an objective function as a function of the 
smooth background model (Xu et al., 2012). In this paper, 
the Born approximation is used to generate reflection data 
while both the velocity model and the reflectivity model 
are updated for each iteration. 
 
Inverting reflections with FWI is a highly nonlinear 
problem and convergence to local minima is a challenge. 
A limitation for inverting reflections then becomes the 
need for good starting models. Over the last decade, 
various efforts have been made to mitigate the problems 
of local minima and many alternative methods have been 
proposed (Shen and Symes, 2008; Van Leeuwen and 
Hermann, 2013; Biondi and Almomin, 2014; Warner and 
Guasch, 2016; Wang et al., 2016; Huang et al., 2016; 
Vigh et al., 2016; Luo et al., 2016). All these previous 
works and our proposed method in this paper aim to 
avoid convergence to local minima by adding additional 
parameters to the model and expanding the search space 
in the hope that eventually the non-physical model 
converges to a physical one. By adopting an objective 
function that automatically adjusts for the poorly matched 
events, our approach is less likely to cycle-skip and in the 
meanwhile provides a deeper background model update 
by using reflected energy. We propose a preconditioning 
optimization algorithm to suppress artifacts introduced by 
conventional RFWI and thereby increase the 
convergence rate. 
 
This paper first presents the theory and methodology for 
our 3D time domain preconditioned RFWI. It compares 
our proposed method with a conventional least squares 
objective function to demonstrate the benefits of our new 
objective function and optimization algorithm using 2D 
synthetic examples. Finally, a 3D field example will be 
shown to demonstrate the production applicability for 
subsalt velocity modeling building and imaging. 
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Theory and Method 

 
We first split the velocity model into a long wavelength 
component m and a short wavelength component r and 
apply the first order Born approximation to the acoustic 
wave equation. Then we have the following duo-
propagator for Born modeling (Hudson and Heritage, 
1980; Aki and Richards, 1980)  

F[m]u = f ,

F[m]du = r¶t
2u.

 

where m represents the subsurface smooth background 
velocity model, r represents the reflectivity model, F[m] is 
the wave operator or D’Alembert operator, u  is the 

forward propagated transmitted wavefield and du  is the 

forward propagated reflected wavefield, f is the source 
function. Let S[m] denote the solution operator for the 
above linearized forward propagated wave equations. 
Then we can compute the forward transmitted wavefield  

u= S[m] f , 

and the forward reflected wavefield 

du= S[m]r¶t
2S[m] f . 

Given an initial background velocity model m and a 
reflectivity model r, our proposed objective function 
optimizes over smooth background model m to minimize 
the local travel time error between the synthetic data and 
the field data. It emphasizes the kinematics and is 
implemented in the time domain using high-order finite 
difference scheme. The forward modeled data are 
obtained from solving the wave equations with a first 
order Born approximation and time shift traces are 
computed from localized cross-correlation between the 
acquired field data and the predicted synthetic data. Luo 
and Schuster (1991) introduced the travel-time based 
objective function. We modified it so that our time error 
becomes a local measurement, which is a function of time 
and space. Our modified version can be beneficial when a 
single time-shift per trace is not adequate for handling 
complicated scenarios. Our proposed optimization 
problem is  

minm J[m]=
1

2
At0 2

2
,

s.t. t0 (xr, t;xs ) = argmaxt c(t, xr, t; xs ),

 

where c the windowed cross-correlation function at each 
trace sample, A is the weighting operator, t  is a time lag 

and t 0
 is the optimal time lag function of time, receiver, 

and source, computed from maximizing the windowed 
cross-correlation. From implicit differentiation and the 
midpoint rule, we can estimate the new approximate 
adjoint source R. The gradient for computing descent 

direction can then be expressed as  

ÑmJ =
2

m3
¶t

2du,S*P*R +
2

m3
¶t

2u,S*r¶t
2S*P*R ,  

where P is the restriction operator (a projection) that 
records the forward modeled wavefield at the receiver 
locations. As we noticed, the tomographic kernel from 
RFWI may introduce strong artifacts from the "rabbit ears" 

and also a sharp velocity contrast does not satisfy the 
Born assumptions. We design a preconditioner C by the 
change of variables v = Cm, then the conjugate gradient 
(CG) descent direction for preconditioned model v at k+1th 
iteration can be modified as follows 

vk+1 = vk +akdk

dk+1 =CCTgk+1 + bkdk

 

Where ak
 is the steplength, and gk  is the gradient, dk is 

the steepest descent direction. The preconditioned CG 
improves the convergence rate for RFWI with less 
artifacts and better updates. Since our preconditioned 
RFWI utilizes a kinematic based objective function, which 
quantifies local move out errors between reflection 
events, it reduces the risk of converging to local minima 
with an inaccurate initial model, compared with those 
using the conventional data misfit norm, and provides a 
deeper reliable background update with reflected energy 
and higher convergence rate. This approach is not limited 
to RFWI, it is also an effective method for mitigating the 
problem with cycle-skipping and increasing convergence 
rates for conventional FWI. Similarly we may replace the 
data residual for least squares FWI with the same adjoint 
source as we used here for formulating the corresponding 
gradient. 

 

Synthetic Examples 

 
We now demonstrate our method on a 2D synthetic 
example. Field data were generated with a Born finite 
difference method with a single reflector at 5000 m depth 
and constant background velocity of 2000 m/s with a 
single source receiver pair. Our first initial model had an 
incorrect constant velocity 2200 m/s. In contrast to 
descent direction of least squares (LS) RFWI in Figure 
1(a), the preconditioned RFWI in Figure 1(b) produces the 
correct direction for updating the model. Figures 1(c) and 
1(d) show the case where the starting model is slower by 
10% than the true model. Comparing with the descent 
direction for least squares RFWI shown in Figure 1(c), the 
preconditioned RFWI in Figure 1(d) provides us with a 
much better descent direction that will lead to faster 
convergence.  
 

 
         (a)  LS with fast velocity                   (b) Precon with fast velocity 

 

 
         (a)  LS with slow velocity                   (b) Precon with slow velocity 

 
Figure 1: Rabbit ear example 
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Next we demonstrate the advantage of the proposed 
approach in the Marmousi dataset. The initial model 
shown in Figure 2(a) is a simple gradient model. The true 
model is shown in Figure 2(b), and was used to generate 
the field data set comprised of 59 common shot gathers 
with a shot spacing of 200 m. Each shot gather contains 
241 receivers with an interval of 20 m. The lowest 
frequency used for inversion was 3 Hz and the maximum 
offset was 4800 m. Figure 2(c) shows the inversion result 
from least squares (LS) conventional FWI while missing a 
good starting model and low frequency data. Although the 
model captures some of the true velocity trend, it 
converged to a local minimum with incorrect layer 
velocities. Our preconditioned RFWI generated 
reasonable updates however it has not converged to the 
true model. In contrast it produced a less detailed 
background model that can be used as a more accurate 
starting model for conventional FWI. Using inverted result 
from preconditioned RFWI as a starting model, 
conventional FWI converged to a more correct model 
shown in Figure 2(e).  
 

 
                (a) Initial velocity                               (b) True velocity 

 
                         (c) LS                                            (b) Precon 

 
                                              (b) Precon + LS 

 
Figure 2: Marmousi example 

 

Results 

 
We finally present another application to a 3D streamer 
data set. This narrow azimuth seismic survey was located 
in the Campeche area offshore Mexico. The maximum 
offset was 6200 m and the lowest frequency used for 
inversion was 3 Hz. Figure 3(a) shows the initial velocity 
that was used for inversion with a maximum depth of 
10000 m overlaying the initial stack image and Figure 3(b) 
shows the inverted model from preconditioned reflection 

FWI with the updated stack image. The image using the 
inverted model in Figure 3(b) shows improvements at the 
base salt and subsalt region indicated in the highlighted 
areas of the images with respect to Figure 3(a). 
Comparing the modeled shot gathers overlaying the field 
shot gathers with initial model in Figure 4(a), our method 
automatically aligned the events to avoid cycle-skipping 
with an improved fit around the first arrivals shown in 
Figure 4(b) and 4(c). The jitter in the shifted final modeled 
data (Figure 4(c)) is caused by areas of low S/N in the 
field data and will have little influence on the final result 
due to the application of the preconditioner. 
Preconditioned RFWI can provide a better reference 
model for FWI and a deeper update such as in subsalt 
GOM scenarios.  
       

                                 (a) Initial velocity with initial stack 

 

 
                             (b) Inverted velocity with updated stack 

 
Figure 3: GOM example 

 

Conclusions 

 
We presented the theory and applications of our 
proposed inversion method, preconditioned reflection 
FWI. We formulated a new objective function that is 
based on the weighted traveltime shifts with the correction 
of the kinematics errors. Therefore it helps avoid cycle 
skipping issues to overcome some of the problems with 
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local minima and relaxes the requirement for successful 
inversion. Additionally, we proposed a preconditioned 
optimization scheme to mitigate the artifacts and improve 
convergence rate. The results showed successful low 
wavenumber update from reflections with improved 
subsalt images. 

 

         
(a) Initial synthetic                             (b) Updated synthetic        

 

 
(c) Updated synthetic with kinematic correction 

 
Figure 4: Shot gathers 
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