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Abstract

Full-waveform inversion is an ill-posed seismic inverse
problem with a strong nonlinearity. The most common
strategy to mitigate the nonlinearity of full-waveform
inversion and make it well-posed is by adopting a
multiscale strategy to mitigate its nonlinearity, where the
inversion is performed sequentially by moving from low
to high frequencies, combined with regularization and
preconditioning schemes to drive the inversion toward
realistic physical models of the subsurface. In this work,
we introduce a hybrid regularization scheme based on the
Cauchy and Tikhonov constraint for multiscale frequency
domain full-waveform inversion. Our regularization scheme
may be a good strategy to recover target in the subsurface
composed with smoothly-varying regions and regions with
strong contrasts of physical parameters. In addition, we
combine our hybrid regularization scheme with an adaptive
weighted parameter to relax the requirement of estimating
a particular regularization parameter for each inversion
stage of a regularized multiscale frequency domain full-
waveform inversion. Numerical examples carried out with
a synthetic model demonstrates that the inverted model
by our scheme is a solution between the inverted models
by full-waveform inversion using Tikhonov and Cauchy
constraint.

Introduction

Full-waveform inversion (FWI) technique aims to recover
detailed medium parameters of the subsurface by a
data fitting procedure based on fitting the measured
with modeled full wavefields at the receiver positions
(Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009).
However, it is a difficult process to recover a realistic set
of medium properties of the subsurface by FWI. This is
mainly because FWI is an ill-posed/conditioned inverse
problem with a strong nonlinearity (Virieux and Operto,
2009; Alkhalifah, 2014) - meaning that its objective function
can have multiple local-minima and that its solution is non-
unique and/or unstable.

One way to mitigate the nonlinearity of FWI is by making
the inversion in stages, starting the process with the part
of the observed data that has a more linear relation with

the model and using the inversion result of this stage as
an initial guess to the next stage, in one way where the
degree of nonlinearity of the observed data used in each
inversion stage increases with stages. As for example,
the multiscale inversion strategy (Kolb et al., 1986; Pica
et al., 1990; Bunks et al., 1995), where the inversion
is performed sequentially by moving from low to high
frequencies, using the inversion result of one frequency
or group of frequencies as an initial guess to the next.
The issue of stability and non-uniqueness of FWI can be
addressed by incorporating regularization/preconditioning
schemes in its formulation, which helps to drive the
inversion toward a realistic model of the subsurface. Thus,
a formulation of FWI as a regularized multiscale inversion
scheme increases the chance of finding a stable solution
that represents the global minimum valley of the inversion
problem. However, in a regularized multiscale inversion
scheme, each inversion stage is a new inversion problem,
and if this inversion scheme is formulated with an additive
regularization term, it is necessary to set an appropriate
regularization parameter for each inversion stage, which is
a complicated process.

Regularization schemes are commonly divided into two
classes: regularization schemes to impose smooth
character on the solution of the inversion problem, like
Tikhonov constraint (Tikhonov and Arsenin, 1977; Bertete-
Aguirre et al., 2002) and regularization schemes to
impose sparseness on the final inversion solution, like
total variation constraint (Bertete-Aguirre et al., 2002) or
Cauchy constraint (Guitton, 2012). However, constraints
to impose smooth feature on the inversion solution are
good options to recover smooth models and constraints
to impose sparseness are suitable to recover models
with strong discontinuities, but in general, the physical
models, like geological models of the subsurface, are a
combination of smoothly-varying regions with regions with
strong contrasts of physical parameters. There are in
the literature some strategies in the direction of hybrid
regularization schemes, which combining softness and
sparseness features in order to recover physical models
composed with smoothly-varying regions and regions with
strong contrasts of physical parameters. For example, a
hybrid regularization scheme is proposed by Gholami and
Hosseini (2013), where the hybrid regularization scheme
is based on Tikhonov and total variation regularization
for reconstruction of piecewise-smooth signals, the others
hybrid regularization scheme are proposed by Song et
al. (2015), where the regularization method combining
Tikhonov with total variation for application in electrical
resistance tomography, and by Aghamiry et al. (2018)
where the hybrid regularization scheme is formulated for
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frequency domain FWI based on wavefield reconstruction
(van Leeuwen and Herrmann, 2013).

In order to recover targets in the subsurface composed
with smoothly-varying regions and regions with strong
contrasts of physical parameters, we introduce in this
work a regularized multiscale frequency domain FWI
based on hybrid regularization scheme, where the hybrid
regularization combining Tikhonov with Cauchy constraint.
Furthermore, as our regularized FWI formulation uses
the hybrid regularization as an additive regularization
term, we combine our inversion scheme with an adaptive
weighted parameter to relax the requirement of estimating
a particular regularization parameter for each inversion
stage. We demonstrate the effectiveness of our scheme
by numerical examples performed with synthetic data
modeled with a two-dimensional (2D) P-wave velocity
model.

Methodology

We have formulated our approach as a gradient based
FWI scheme (Lailly, 1983; Tarantola, 1984; Pratt et al.,
1998; Virieux and Operto, 2009) adopting the l2 norm ‖ ·‖2
(Tarantola, 1987; Wang, 2017) for the data misfit term and
an additive regularization term, where the regularization
term is a hybrid regularization scheme combining Tikhonov
with Cauchy constraint. In addition, we have used the
theory of adjoint-state method (Plessix, 2006) to compute
the gradient of the objective function.

The regularized objective function

As each inversion stage from a multiscale FWI scheme
is a new inversion problem, we attempt to minimize the
following regularized objective function for each inversion
stage s:

Φs(m) =
1
2

Ns,l
ω

∑
i=Ns, f

ω

N j

∑
j=1

Ws‖Γ ju j(m,ωi)−d(obs)
j (ωi)‖2

2

+ µsφ(m,ηs), (1)

such that at every iteration, the monochromatic acoustic
wavefield u j(m,ωi) ∈ CM×1, over the complex field C (M
indicates the number of grid points of the full-computational
domain) and generated by a source j, is obtained by the
solution of the discretized acoustic wave equation in the
frequency-space domain (Marfurt, 1984):

B(m,ωi)u j(ωi) = F j(ωi). (2)

Where B(m,ωi) ∈ CM×M is the monochromatic impedance
matrix built from the finite-difference (FD) approximation of
the acoustic wave-equation in the frequency-space domain
(da Costa et al., 2019) with absorbing boundary condition
Perfectly Matching Layer (PML) (Bérenger, 1994). The
vector m ∈ RM×1, over the real field R, represents the P-
wave velocity model discretized on a grid over the full-
computational domain and ωi represents the ith angular
frequency sample, where for simplicity, we are using
ωi=̇i∆ω, where ∆ω represents the angular frequency
sampling interval. Finally, the monochromatic column
vector F j(ωi) ∈ CM×1 represents a source j. In the first

part of equation (1) (data misfit term), d(obs)
j (ωi) ∈ CNr×1

represents the observed data set (Nr indicates the total
number of receivers) generated by a source j. The

matrix Γ j ∈ RNr×M is a linear operator that extracts, for
each source j, the values of the modeled wavefield at the
receiver positions. The parameters Ns, f

ω and Ns,l
ω indicate

the first and last frequency sample, respectively, used
in each inversion stage s, with N0

ω ≤ Ns, f
ω ≤ Ns,l

ω ≤ Nmax
ω ,

where N0
ω and Nmax

ω represent the first and last frequency
sample available in the observed data set, respectively,
and N j represents the total number of sources. Finally,
the parameter Ws is an adaptive weighting parameter
(dimensionless), which will be introduced in details later.
In the second part of equation (1) (regularization term),
the parameter µs is a trade-off parameter (regularization
parameter) that balances the data misfit term and the
influence on the inversion result of the regularization
term for each inversion stage s, and φ(m,ηs) represents
the hybrid regularization term: a combination of the
Tikhonov with Cauchy constraint. The parameter ηs
is a dimensionless weighting parameter which controls
the influence of the Tikhonov and Cauchy constraint on
the final result of the inversion process. Note that this
parameter may be different for each inversion stage.

The adaptive weighted parameter

As was discussed by Guitton (2012) in a regularized
multiscale FWI scheme in the time-space domain, a more
intuitive way to estimate µs is through an user-defined
dimensionless ratio Rs, which is given by the ratio between
the initial value of the data misfit term and the regularization
term:

µs =
∑

Ns,l
ω

i=Ns, f
ω

∑
N j
j=1 ‖Γ ju j(m,ωi)−d(obs)

j (ωi)‖2
2

Rsφ(m,ηs)
. (3)

The subscript s in the regularization parameter µs indicates
that, in principle, we should estimate a specific value of µs
for each inversion stage s, which is a difficult process. On
the other hand, we have numerically observed that to use
the same regularization parameter for all inversion stages
may work well if the initial value of the data misfit term is
approximately the same for all stages. However, we have
also observed that the initial value of the data misfit term
in a multiscale frequency domain FWI can be very different
from one stage to another. In order to relax the requirement
of estimating a particular regularization parameter for each
inversion stage, we inserted a weighting parameter Ws in
the data misfit term of the regularized objective function
in order to keep the initial value of the data misfit the
same for all inversion stages. Note that this parameter
does not change the topology of the data misfit term.
This weighting parameter is adapted for each inversion
stage, where its value is estimated automatically during the
inversion process from the ratio between the initial value of
data misfit term of the first and current inversion stage:

Ws =
∑

N1,l
ω

i=N1, f
ω

∑
N j
j=1 ‖Γ ju j(m,ωi)−d(obs)

j (ωi)‖2
2

∑
Ns,l

ω

i=Ns, f
ω

∑
N j
j=1 ‖Γ ju j(m,ωi)−d(obs)

j (ωi)‖2
2

. (4)

Note that if we use the same µs for all inversion stages,
this does not imply that Rs will be the same for all stages,
because the latter also depends on the regularization term,
which, in general, has a different value in each inversion
stage.
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The hybrid regularization scheme

Based on the features of Cauchy and Tikhonov constraint,
we propose a hybrid regularization scheme formulated as
a combination of these two constraints, given by:

Φ(m,ηs) = ηsφ
(C)(m)+(1−ηs)φ

(T )(m)

= ηs
Wφ

2 ∑ log
(

1+
|∇m|2

λ 2

)
+ (1−ηs)

1
2 ∑

|∇m|2

β 2 . (5)

Where the first term is the Cauchy constraint of first
order (where ∇ represents the standard spatial differential
operator) and the second term is the Tikhonov constraint
of first order. The parameter β in the Tikhonov stabilizer
make it dimensionless and the parameter λ in the Cauchy
term is used to make it dimensionless and to control the
sparseness imposed by this constraint in the inversion
solution (Guitton, 2012; Wang, 2017). As was pointed out
previously, the parameter ηs is a dimensionless weighting
parameter that balances the influence of the Tikhonov and
Cauchy constraint on the solution of inversion problem.
Thus, the choice of this parameter is very important in
our regularized scheme, because it will determine the
character of the solution of the inversion problem. As
in theory, FWI can estimate quantitative models of the
subsurface with high resolution, we have imposed high
weight to Cauchy constraint and using the Tikhonov
constraint to refine the influence of Cauchy constraint on
the inversion result. Finally, as the value of Cauchy and
Tikhonov regularization may be different in each iteration,
we have introduced the parameter Wφ to make sure that
both constraints have the same value and that the balance
between them is controlled exclusively by the parameter ηs.
We use the following equilibrium equation to estimate the
parameter Wφ for every iteration:

1 =
φ (T )(m)

Wφ φ (C)(m)
. (6)

Note that in this equation we are considering that the
constraints are different of zero.

The strategies of inversion

In order to attenuate the degree of nonlinearity of FWI, we
have adopted the multiscale inversion process by inversion
of a group of frequencies in each inversion stage s, where
each inversion stage is determined by Ns, f

ω and Ns,l
ω , which

represents the first and last frequency used in each group
of frequencies inverted simultaneously, respectively. In this
strategy, the inversion is performed sequentially by moving
from low to high frequencies, using the inversion result of
one group of frequencies as an initial guess to the next one.

To set the parameter ηs, we first divided all inversion stages
in three big groups (here, we are using nearly the same
number of inversion stages for each group), such that for
each group, we set a specific value for ηs [0.95,0.85,0.75],
where we have started with high value and decrease it for
the next two groups, but always using ηs ≥ 5.

For inversion performed using the hybrid, Tikhonov and
Cauchy regularization, we use Rs = 50.0, Rs = 25.0 and
Rs = 3.0 to determine the regularization parameter in the

first stage of each big group used to set the value of ηs,
respectively. This means that we have used only three
different regularization parameters during all inversion
stages.

To perform some numerical examples, we have adopted
the Quasi-Newton optimization method L-BFGS-B
(Nocedal, 1980; Nocedal and Wright, 2006) to find the
velocity model m that minimizes the regularized objective
function in each inversion stage.

Numerical examples

The effect of our regularized inversion scheme will be
demonstrated on noise-free synthetic seismic data set,
which was modeled with a code based on the classic
FD approximation of 9 points of the 2D acoustic full-
wave equation in the frequency-space domain. In
addition, this code is constructed with PML to attenuate
the boundary reflections from the sides of computational
domain. Furthermore, as our FWI code requires as input
the observed data in the time domain and our modeling is
performed in the frequency-space domain, we applied the
Fastest Fourier Transform in the West (FFTW) (Frigo and
Johnson, 2005) on the modeled waveforms to get them in
the time-space domain.

The modeling of the observed data set

In this work, we are claiming that our regularized inversion
scheme is suitable to recover target in the subsurface
composed with smoothly-varying regions and regions with
strong contrasts of physical parameters. Thus, to generate
the observed data set to test our scheme, we constructed
a P-wave velocity model (which we named BUJA2019
velocity model), displayed in Figure 1(a), which has both
features: smoothly-varying regions and regions with strong
velocity contrasts. In addition, as density distribution we
used a homogeneous density model with 1200.0 kg/m3.
The model cover an extension of 6.0 km in the lateral
direction and 2.0 km in depth, with a regular discretization
of 0.008 km. We used 76 sources distributed just below the
surface (z = 0.048 km), with increments of 0.08 km, and a
fixed set of 376 receivers distributed in a line in the lateral
direction at z = 0.096 km, equally spaced with 0.016 km.
We used the Ricker pulse form as wavelet with 10.5 Hz
peak frequency (maximum frequency around 31.5 Hz). In
Figures 1(b) and 1(c), we displayed two shotgathers from
this modeling, from sources positioned at 0.96 km and 4.96
km in the lateral direction, respectively. In this modeling we
are not considering a free-surface.

The waveform inversion results

Here, an inversion process by FWI (i.e., a complete FWI
result) consists of an inversion of a frequency bandwidth
of 27.0 Hz, from 2.5 Hz up to 29.5 Hz, divided in 14
inversion stages carried out successively (with a maximum
of 100 iterations per group of frequencies inverted). For
each inversion stage, we have used a coverage of 2.0
Hz, i.e., Ns, f

ω − Ns, f
ω = 2.0 Hz, with increments of 0.5 Hz

into each group of frequencies inverted. In addition, we
have considered that the homogeneous water layer, the
maximum and minimum velocity of the model and the
wavelet are known as an a priori.

For this example, we set λ = 10 m/s and β =
√

10 m/s.
These parameters have units of velocity because the
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Figure 1: (a) P-wave velocity model used to model the
observed synthetic data set. (b) Shotgather generated by a
source positioned at x = 4.6 km. (c) Shotgather generated
by a source positioned at x = 4.96 km.

derivatives of the velocity model in the regularization term
are not divided by dx or dz.

We used as initial P-wave velocity model for inversion a
smoothed version of the true model without the salt body,
displayed in Figure 2(a), which was obtained with the
program smooth2 (using r1 = r2 = 30) of the Seismic Unix
(Cohen and Stockwell, 2008) software package. Note that
this initial model has a good cinematic information, which
is an a priori information about the subsurface that can
be estimate by Wave-equation Migration Velocity Analysis
(Biondi and Sava, 1999; Sava and Biondi, 2004a,b;
Alkhalifah and Wu, 2017), for example.

We begin our numerical examples showing that the initial
value of data misfit term of the regularized objective
function may be very different from an inversion stage
to another, and that this implies that we should estimate
a specific regularization parameter for each inversion
stage, which is a very difficult process. To show
this, we performed an inversion process by FWI without
regularization, where the result is displayed in Figure 2(b).
We can see from this inversion result that the inversion
process works well. In Table 1, we show the normalized
initial value of the data misfit term of this inversion process
of each inversion stage carried out. For this example, the
difference between the initial value of the data misfit term
of the first and second inversion stage is more than 80%. In
addition, we can see that all initial value of the data misfit

Table 1: Normalized initial value of the objective function of
each inversion stage

Stages Normalized initial value
1 1.0
2 0.176172506
3 0.158033488
4 0.169412255
5 0.176186259
6 0.084483547
7 0.050677233
8 0.020439166
9 0.008954912

10 0.002821997
11 0.000681794
12 0.000222215
13 0.000055216
14 0.000008844

term are different from one another. This indicates that
to impose some features on the inversion solution by an
additive regularization term, it can be necessary a specific
value of the trade-off parameter, which balances the data
misfit and the influence on the inversion result of the
regularization term, for each inversion stage. This makes
sense because each inversion stage is a new inversion
problem. Because that, in this work we introduce the
parameter Ws in order to relax the requirement of a specific
regularization parameter for each inversion stage.

To show the effectiveness of this parameter, we carried
out the inversion process by FWI using the Tikhonov
and Cauchy constraint as an additive regularization term.
In Figure 3 we displayed the inversion results using the
Tikhonov regularization combined Ws (Figure 3a) and
without this parameter (Figure 3b). We can see from
these results that the inversion result without using the
parameter Ws was strongly smoothed, as expected. In
Figure 4, we displayed the inversion results using Cauchy
regularization combined Ws (Figure 4a) and without this
parameter (Figure 4b). We can see in this case that
the inversion result without using the parameter Ws was
strongly affected by the regularization term.

Finally, in Figure 5 we displayed the regularized FWI result
using the hybrid regularization scheme. As expected, the
inversion result is a solution between the inverted models
by FWI using Tikhonov and Cauchy constraint.

Conclusions

In this work, we discuss a hybrid regularization scheme
for multiscale frequency domain FWI. This scheme can
be a good strategy to recover target in the subsurface
composed with smoothly-varying regions and regions with
strong contrasts of physical parameters.

We also introduce a strategy to relax the requirement of a
specific regularization parameter for each inversion stage
of a regularized multiscale frequency domain FWI with an
additive regularization term. This strategy is based on the
observation that only one regularization parameter may
work well for all inversion stages if the initial value of the
data misfit term is approximately the same for all stages.
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Figure 2: (a) Initial P-wave velocity model to start the
inversion process. (b) Inversion result by FWI after 14
groups of frequencies inverted successively, from 2.5 Hz
up to 29.5 Hz, using maximum of 100 iterations per group
of frequencies inverted.
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Figure 3: Inversion result by regularized FWI with Tikhonov
regularization after 14 groups of frequencies inverted
successively, from 2.5 Hz up to 29.5 Hz, using maximum of
100 iterations per group of frequencies inverted. (a) Using
the parameter Ws. (b) Without using Ws.

Thus, in order to use the same regularization parameter
in all stages, we inserted a weighting parameter within the
objective function in order to keep the initial value of the
data misfit term the same for all inversion stages.

We showed numerically that the inversion solution by
the regularized multiscale frequency domain FWI using
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Figure 4: Inversion result by regularized FWI with Cauchy
regularization after 14 groups of frequencies inverted
successively, from 2.5 Hz up to 29.5 Hz, using maximum of
100 iterations per group of frequencies inverted. (a) Using
the parameter Ws. (b) Without using Ws.
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Figure 5: Inversion result by regularized FWI with hybrid
regularization after 14 groups of frequencies inverted
successively, from 2.5 Hz up to 29.5 Hz, using maximum
of 100 iterations per group of frequencies inverted.

our hybrid regularization scheme is a solution between
the inverted models by FWI using Tikhonov and Cauchy
constraint. In addition, we showed numerically that the
adaptive weighted parameter for the data misfit term
can be a good strategy to relax the requirement of a
specific regularization parameter for each inversion of
a regularized multiscale frequency domain FWI with an
additive regularization term.
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