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Abstract

The current work presents convolutional neural networks
being used for semantic segmentation of salt bodies on
seismic volumes. The salt body could be used to extract
seismic horizons or geobodies. Our contribution is twofold.
First of all, it is presented that convolutional neural net-
works can behave as an auxiliary tool by the geophysical
interpreter. Furthermore, it is analyzed the amount of in-
put data that is required to have a good prediction by the
network.

Introduction

Convolutional Neural Networks (CNN) are being used on
image classification for more than two decades (LeCun
et al., 1998). There was a resurgence of these techniques
after the breakthrough work of Krizhevsky et al. (2012).
Since then the field has been expanding with practitioners
applying these techniques in a great variety of fields and
problems. One of the first works using CNN for semantic
segmentation applied a modified version of a classification
network to generate per pixel classification (Long, 2016;
Long et al., 2014).

Recently, CNNs and others neural networks have been
used for seismic classification and segmentation. One of
the first of those works classified only the central pixel of a
seismic sub-cube (Waldeland and Solberg, 2017; Walde-
land et al., 2018). Per pixel with sliding window predictions
were not considered an ideal procedure due to their high
computational cost and they have been rapidly replaced
by segmentation networks (Gramstad and Nickel, 2018;
Karchevskiy et al., 2018).

During the course of this work, two types of segmentation
network archictectures were used to study salt interpreta-
tion, analysing the amount of input data needed to have a
good prediction and the quality of automatic horizons that
results from our workflow. Also, different training strategies
were tested in order to achieve higher predictive power and,
more importantly, the amount of training data that is neces-
sary as a start to accelerate the specialist’s work.

Theory

As usual when using deep learning techniques we define a
parametrized function f (x,θ) with x being a (small) seismic
image patch used as input and θ the trainable (optimizable)

- U-Net DeepLab
`1 binary crossentropy focal loss with label smoothing
`2 dice loss ternaus loss
`3 None binary cross entropy

Table 1: Losses functions used to train the two models con-
sidered. The focal loss (Lin et al., 2017) was modified to in-
corporate label smoothing (Szegedy et al., 2015) that acts
as regularizer (Pereyra et al., 2017). The third loss used
on the Deeplab classifies if the patch has salt or not (deep
supervision) and also act as regularizer (Kornblith et al.,
2018)

weights (parameters) of the segmentation network. A va-
riety of neural networks architectures exists for semantic
segmentation, for instance see (Ronneberger et al., 2015;
Zhao et al., 2016; Chen et al., 2018).

The training procedure is performed by optimizing 1:

L (θ) =
npatches

∑
i=1

`(yi, f (xi,θ)). (1)

In equation 1 f is the neural network employed, y is the
ground truth patch (segmentation mask) and ` is the per
example loss equal to ` = α`1 + β`2 + γ`3 being `i with
i∈ {1,2,3} losses functions used by the U-Net and Deeplab
networks as shown on table 1 and α, β , γ empirically de-
termined scalars.

The use of the dice (Milletari, 2017) and ternaus (Iglovikov
et al., 2018) losses are motivated by the IoU (Intersection
over Union) metric. This measure is commonly used to
measure the quality of semantic segmentation results as
shown on figure 1. Since this coefficient is defined over the
segmented mask of a discrete set of points it is not differ-
entiable and instead of being employed directly in the opt-
mization, some sort of smooth approximations are used as
discussed in (Milletari, 2017; Berman and Blaschko, 2017;
Iglovikov et al., 2018).

IOU = 

Figure 1: IoU metric ranges from 0 (no intersection) to 1
(perfect intersection).

The problem determined by equation 1 is solved using
stochastic optimization techniques (Bottou, 2010). These
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methods approximates the gradient of 1 using small sub-
sets (minibatches) of the data allowing a large number
of weights updates for what would be the typical cost of
only one update of a full batch method. In particular
the presented results were trained using the ADAM opti-
mizer (Kingma and Ba, 2014) and a variant of the Stochas-
tic Gradient Descent with momentum (Sutskever et al.,
2013).

Two architectures were tested for the presented results. A
variation of the U-Net (Iglovikov et al., 2018) that uses as
encoder the ResNeXt-50 model Xie et al. (2016) and also
a variation of the DeepLab v3+ (Chen et al., 2018) using as
encoder a modified ResNet-101 (He et al., 2015) network
with output stride of 8. With both encoders being pretrained
on the ImageNet dataset (Deng et al., 2009). Despite of
the differences between the datasets (natural versus seis-
mic images) there are indications that pretraining on Ima-
geNet is useful albeit less them for similar datasets (Korn-
blith et al., 2018).

The U-Net architecture initially proposed on (Ronneberger
et al., 2015) is widely used on segmentation problems. This
architecture can generate features with a rich distribution of
semantic meaning and resolution due to the use of multi-
ple blocks that operate at different resolutions. The use
of multiple skip connections among the encoder and de-
coder blocks is knwon to create shortcuts that facilitate the
training due to the combination of low level (high resolu-
tion) features with semantically richer features. Recently,
as discussed previously, there is a trend to use classifica-
tion networks as an encoder for the U-Net.

The Deeplab v3+ (Chen et al., 2018) is the fourth iteration
of the Deeplab family of networks for semantic segmenta-
tion. These networks use as encoder a classification net-
work. This network is modified to use an output stride of
8 instead of the usual 32. The segmentation head is com-
posed of one ASPP (Atrous Spatial Pyramid Pooling) block
that uses atrous convolution with different dilation rates to
capture information at multiple scales. To improve the qual-
ity of the segmentation mask the result of the ASPP block
is combined with low level features, that have higher reso-
lution. It is important to note that the segmentation result
has one quarter of the resolution of the input image.

Methodology

A typical 3d seismic volume has thousands of points per
axis. Segmenting a whole section would be challenging
due to the limited amount of GPU memory typically avail-
able and also requiring a large number of already inter-
preted sections. Due to these constraints we have opted
to use 2D overlapping patches. These patches of size
256× 256 were generated from a small amount of seismic
sections that were chosen randomly from the 3D volume.
This is not an ideal sampling strategy since we could sam-
ple lines with labels of lower quality than the average, for
instance due to interpolation problems or lines that are too
similar to each other.

Two distinct procedures were used to generate the
datasets. For the U-Net the patches were generated us-
ing an overlapping grid of patches that covers the chosen
lines. While for the deeplab model the patches were ran-
domly selected from the chosen lines and also subjected to
a data augmentation procedure consisting of affine trans-

Figure 2: Pictoric representation of the U-Net and Deeplab
v3+ used to perform segmentation. Blue and green col-
ors identify the encoder and decoder paths, respectively.
Square sizes represent the feature map resolution.

formations and elastic distortions (smooth random warping
applied to the patches).

Figure 3 ilustrates some of the transforms applied to the
patches from the dataset.

(a) original (b) scale

(c) rotation (d) shear

Figure 3: Examples of different affine transforms to aug-
ment the data training.

The training strategies were similar for both neural net-
works. Both of them employed schedulings that reduce
the learning rate along the training. The losses em-
ployed for the deeplab model were slightly different than
the ones used for the U-Net as discussed on table 1.
The training and prediction were performed in parallel us-
ing the Horovod (Sergeev and Balso, 2018) library for dis-
tributed synchronous training. The models, input pipeline,
training loop were implemented using the Pytorch frame-
work (Paszke et al., 2017).

The prediction cubes were formed by creating predictions
for every line being the prediction of one of these lines ob-
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tained by weighted stack of the patches that cover the line.

Discussion

The results on figure 6 show that the network prediction
results has high coherence with the geology even when
using only two lines for training and that adding more lines,
rapidly increases the quality of the segmentation results.

It is possible to conclude that that is a diminishing returns
tendency. That after some point, adding more lines to be
trained does not increase noticeably the quality of the re-
sults. Indicating that the newly added data was not infor-
mative. It points out that a better estrategy to select new
lines should be used.

Figures 7 and 8 show the error maps between the predicted
and ground truth horizons for the top and base of salt. The
segmentation results for these figures were produced using
the Deeplab Model. The central region of the map presents
itself with lowest errors, whereas most of the large errors
are around the edges of the model.

It is instructive to analyze some of the mistakes shown on
figures 7 and 8. For the top of salt (see top graph of fig-
ure 7), there is a region of discrepancy between the pre-
diction and the ground truth labeling (shown on figure 4).
This region presents a more complex setting. Looking
closely, one can conclude that some mistakes are due to
the lack of contrast among events which would characterize
the salt/non-salt frontier. It is possible that some of those
events were not in the lines used during the training of the
model. In that way, there could be an iterative work with a
specialist that would correct those regions and than retrain
the model adding the new corrected labels and line so that
the next predictions could better recognize the regions that
were previously mistaken.

Figure 4: Complex region. Ground truth (red), predicted
result (blue).

On the other hand, it is also possible to find places in which
the difference between the interpretation and the prediction
could actually be a correction of the ground truth label. For
instance the region with largest errors on figure 8 actually
corresponds to mislabeled horizon as shown on figure 5.

Figure 5: Ground truth (red), predicted result (blue).

It’s important to point out that the final decision should be
made by the specialist that would conclude whether there
was a mistake on his part or not. Following the previously
cited iterative process, the specialist could correct the label
and then retrain the network so that it would be clearer for
the model to learn better patterns without ambiguities.

Conclusion

Convolutional Neural Networks are a promising tool to per-
form segmentation of seismic datasets. The numerical ex-
periments showed that with a small amount of interpreted
lines (less than 1% of the volume) one could obtain rea-
sonable salt segmentation results. Indicating that for some
tasks the outlined work could be used to accelerate the
construction of horizons.

During the seismic interpretation, the specialist could start
with a few lines, for instance two, train the network and ob-
tain a first draft of what could be the salt target in the whole
volume. Then, he or she could analyze and correct some
of the lines in which the model’s prediction were way off of
what could be the right event. After that, the model could be
fine-tuned with the new corrected lines given as labels. The
next prediction of the whole volume should be more accu-
rate than the previous one. That iterative process could be
repeated until an acceptable salt prediction were obtained.
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(a) 2 lines. (b) 4 lines.

(c) 8 lines. (d) 16 lines.

(e) 24 lines. (f) ground truth

Figure 6: Segmentation results for different numbers of inlines used to train the network using the U-Net network.

Figure 7: Extracted Top of salt horizon for the indicated lines.

Figure 8: Extracted Base of salt horizon for the indicated lines.
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