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Abstract 

Tomography is today the standard tool in velocity model 
building. It is a paramount part of the seismic method, 
whose purpose is to obtain accurate images of the interior 
of the planet. In this work, a traveltime tomography based 
on the discretization of the velocity model by radial basis 
functions is proposed. The forward modelling is done with 
an algorithm based on the resolution of the eikonal 
equation by finite differences. The inverse problem 
estimates the coefficients of the radial basis functions. 
Radial basis functions can represent velocity models with 
a reduced number of parameters and nodes can be 
positioned without prior information. The results of the 
experiments show that the developed inversion tool is able 
to retrieve the parameters of the models represented by 
these functions. 

 

Introduction 

Since 1970 decade, seismic tomography has been 
developed (Nolet et al., 2008). Bois et al. (1972) introduced 
inter-well transit time inversion. Bishop et al. (1985) 
presented a tomographic method to estimate reflectors 
depth and seismic velocity from reflection data. 

The objective of tomographic inversion is to estimate 
subsurface velocity distribution, based in measures of 
transit time of transmission, refraction or reflection (Jones, 
2010). 

Two main steps compose a tomographic problem. The first 
one is the forward problem that aims to calculate the transit 
time and rays trajectory through a velocity model. In this 
work, forward modeling was carried out with an Eikonal 
based algorithm. The second step is the inverse problem 
that estimates the velocity model parameters. In this work 
the Gauss-Newton method was used together with 
Conjugate Gradient (CG) as the solver. 

We tested the use of a radial basis function (RBF) to 
represent the velocity field. The use of RBF allows a 
reduced number of parameters to describe the model that 
adds the important benefit of computational reduction cost. 
Circular anomalies are very well represented and RBF can 
be used to represent geologic features. 

Theory 

According to Aster et al. (2013), the relationship between 
the data collected in the field and the model is generically 
represented by: 
 

𝐺(𝑚) = 𝑑, 

if the data is discrete, 𝑑 = [𝑑1 , 𝑑2, … , 𝑑𝑚]𝑇 is the data 
parameter vector and, in the present work, corresponds to 

the transit times. 𝑚 = [𝑚1, 𝑚2, … ,𝑚𝑛]𝑇 is the velocity 
model parameters vector. The matriz 𝐺𝑚×𝑛 is the operator 

that relates time and velocity. It represents the physical 
phenomenon of the seismic wave propagation. The 
forward problem consists of finding 𝑑 given 𝑚 and 𝐺. The 

obtained data is called calculated or synthetic data (𝑑𝑐𝑎𝑙𝑐). 

The inverse problem aims to estimate the parameter model  
𝑚 for a known 𝑑. 

Inverse problems in geophysics are usually ill-posed 
because the data is not sufficient to estimate in a unique 
and stable way the distribution of the physical properties in 
subsurface (Silva et al., 2001). The tomographic problem 
is also non-linear, since the operator 𝐺 is a function of the 

parameters of the model 𝑚. 

Tomography aims to obtain a velocity model that minimizes 
a functional given by the difference between the transit 

times calculated in the forward modeling (𝑑𝑐𝑎𝑙𝑐 = 𝐺(𝑚)) 
and observed data (𝑑𝑜𝑏𝑠), called residuals: 

𝑟 = 𝑑𝑜𝑏𝑠 − 𝐺(𝑚). 

We can formulate minimization problem mathematically as: 

min
𝑚

𝛾(𝑚), 

where 𝑚 is the model parameters vector. The function 

𝛾(𝑚) is called objective function and corresponds to a 

measure of misfit of the residual vector. In this work, norm-
2 is used: 

𝛾(𝑚) =
1

2
‖𝑟‖2

2. 

RBFs give rise to a class of interpolation functions within 
the so-called meshfree methods. They use a set of nodes 
scattered in both the domain and the boundaries of the 
problem, and do not require a priori information to establish 
a relationship between the nodes (Liu and Gu, 2005).  

A RBF is a finite linear combination of base functions with 
radial symmetry relative to its center (Buhmann, 2003). 
The symmetry takes the form 𝜙(‖. ‖2) where ‖. ‖2 denotes 

the Euclidean norm: 

Φ(𝑥) = 𝜙(‖. ‖2) = 𝜙(𝑟).  
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The independent variable is the Euclidean distance 
between the center of a base function and the points 
scattered on the problem domain. The form of Φ(𝑥) is: 

Φ(𝑥) = ∑ 𝜆𝑘𝜙(‖𝑥 − 𝑐𝑘‖2),

𝑛

𝑘=1

 

where 𝜆𝑖 are the coefficients of the base function and 𝑐𝑘 

are the centers, where the 𝑛 nodes scattered by the 

domain are located. Considering Φ(𝑥𝑖) = 𝑓𝑖, in matrix form 

we get: 

𝐻𝜆 = 𝑓, 

where the coefficients 𝜆𝑘 are the unknowns obtained with 

the resolution of the linear system and 

𝐻 =

[
 
 
 
𝜙(‖𝑥1 − 𝑐1‖2) 𝜙(‖𝑥1 − 𝑐2‖2) ⋯ 𝜙(‖𝑥1 − 𝑐𝑛‖2)

𝜙(‖𝑥2 − 𝑐1‖2) 𝜙(‖𝑥2 − 𝑐2‖2) ⋯ 𝜙(‖𝑥2 − 𝑐𝑛‖2)

⋮ ⋱ ⋮
𝜙(‖𝑥𝑚 − 𝑐1‖2) 𝜙(‖𝑥𝑚 − 𝑐2‖2) … 𝜙(‖𝑥𝑚 − 𝑐𝑛‖2)]

 
 
 
. 

The index 𝑚 corresponds to the number of points of the 

original function to be interpolated. 

The study of the RBFs began in Hardy (1971) with the 
purpose of representing a topographic surface by means 
of the interpolation of scattered points, using a multi-
quadric function. Recently, in the area of data inversion in 
geophysics, Peters et al. (2017) present a methodology for 
adaptive parametrization for FWI, using RBFs. Dahlke et 
al. (2017) use a sparse representation based on RBFs to 
represent the implicit surface of salt bodies and developed 
a new formulation of the Full Waveform Inversion (FWI) 
objective function. Kadu et al. (2017) used a level-set 

function represented by an RBF to modify the geometry of 
a salt body during a FWI inversion process. 

We chose the two-dimensional Gaussian RBF to discretize 
the velocity model for this work: 

𝑣(𝑥, 𝑧) = ∑𝐴𝑖𝑒
−

1
2
[
(𝑥−𝑥𝑖)

2

𝜎𝑥𝑖
2 +

(𝑧−𝑧𝑖)
2

𝜎𝑧𝑖
2 ]

,

𝑛

𝑖=1

 

where 𝐴𝑖  are parameters related to the height of the curve's 

peak of the Gaussian, 𝜎𝑥𝑖
 and 𝜎𝑧𝑖

  are parameters related 

to the shape of the function in the x and z directions, similar 
to the standard deviation used in statistic, and 𝑥𝑖 and 𝑧𝑖 are 

the coordinates of the Gaussian center. 

 

Method 

The experiment considered a synthetic velocity model with 
dimensions of 2000m x 2000m, in the coordinates 𝑥 

(horizontal) and 𝑧 (vertical). Two hypothetical vertical wells 

are positioned, with the sources located at coordinate 
𝑥=0.0 and the receivers at coordinate 𝑥=2000.0. The 

observed data, derived from the synthetic model, is 
generated with the same algorithm used to generate the 
calculated data. 

A background model with vertical velocity gradient was 
generated with 9 Gaussian radial basis functions (Fig. 1). 
Table 1 displays the value of the 𝐴 parameter for each 
node and the 𝜎 parameter is the same for all points: 

𝜎𝑥=8000 and 𝜎𝑧=1000. Anomalies were added to this 

model, also represented by Gaussian FBR. The objective 
of the inversion is to determine the parameter 𝐴 of each 

anomaly. 

The tomographic problem was solved by the Gauss-
Newton optimization method, where a search direction and 
a step size are found. It starts from an initial model 𝑚0 and 

the problem is replaced by a sequence of linear least 
squares problems, solved in successive iterations and 
whose final solution converges to the solution of the 
original nonlinear problem (Heath, 2002; Menke, 2012). 

The update expression of the model is given by: 

𝐽𝑇(𝑚)𝑖𝐽𝑇(𝑚)𝑖∆𝑚𝑖 = −𝐽𝑇(𝑚)𝑖∆𝑑𝑖, 

where 𝐽𝑇(𝑚)𝑖 is the Jacobian, or sensitivity matrix, of the 𝑖-
th iteration and 𝐽𝑇 denotes its transpose. A small 

perturbation in the data ∆𝑑𝑖 is related to a small 

perturbation in the model ∆𝑚𝑖. The model perturbation ∆𝑚𝑖 

is used to update the model parameters vector 𝑚𝑖+1. Each 

entry of the 𝐽𝑇 matrix is given by: 

𝐽𝑇 =
𝜕𝐺(𝑚𝑞)

𝜕 𝑚𝑗
. 

For each source, one generates a travel time matrix, from 
which the trajectory and transit time of each ray is 
calculated. 

In each iteration of the program a new Jacobian matrix is 
calculated and the result of the inversion corresponds to an 
updating direction of the model ∆𝑚. This direction is then 

normalized and multiplied by a step size. Step sizes 
decrease during iterations. 

According to ray theory, the travel time of a wave 
generated at a source and arriving at a receiver can be 
obtained by means of the eikonal equation: 

|∇𝑇(𝒙)|2 =
1

𝑣(𝒙)2, 

where 𝒙 = (𝑥, 𝑧) represents the position vector and 𝑥 and 

𝑧 are the horizontal and vertical coordinates, respectively, 

𝑣(𝒙) is the medium velocity and 𝑇(𝒙) represents the arrival 

time of a wavefront at position 𝒙. 

The forward problem was solved using the algorithm 
developed by Podvin and Lecomte (1991). These authors 
proposed a method to calculate the transit time at any 
position of a spatial mesh, solving the eikonal equation 
using finite differences. The output of the algorithm is a 
transit time matrix. 

Ray tracing is calculated from receivers to the source, in 
the opposite direction to the time gradient of the transit time 
matrix. 

A module was implemented to verify, for each ray, if any of 
its segments are within an influence support proportional 
to the 𝜎 parameter of the anomaly under consideration. If 

the ray crosses that region, the sensitivity coefficient is 
calculated. Otherwise, the coefficient is nullified. The 
objective is to discard coefficients of rays that has little 
influence of the anomaly, as illustrated in figure 2. 
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Figure 1 - Background model. Circles in black show the 
location of Gaussian FBR centers. 

Table 1 - Values of the 𝐴 parameter for the background 
model 

𝐴𝑖=265.0m/s 𝑐0 𝑐3 𝑐6 
𝐴𝑖=450.0m/s 𝑐1 𝑐4 𝑐7 
𝐴𝑖=700.0m/s 𝑐2 𝑐5 𝑐8 

 

 
Figure 2 - The doted circumference around the anomaly 
represents the support region. Rays that pass within this 
region have their coefficient of sensitivity calculated 
otherwise they become null. 

Results 

In this section we present inversion results for velocity 
models containing anomalies represented by the Gaussian 
RBF. The objective of the experiment is to obtain the 
correct value of the 𝐴 parameter of these anomalies. 

The examples highlights the flexibility of parameterization 
with these functions. 

The first two experiments consist of two anomaly points 
with 𝜎𝑥=𝜎𝑧=100 and an additional one where there is no 

anomalous value, i.e., only the background model. The 
positions and values of the 𝐴 parameter of these points can 

be checked in table 2 and table 3.  A total of 40 sources 
housed between 𝑧=0.0 and 𝑧=1950.0 at interval of 50m 
and 40 receivers from the coordinate 𝑧=0.0 and 𝑧=1950.0 

with interval of 50m are used. Thus, 1600 rays are defined. 
The objective is to evaluate if the inversion is able to 
recover the correct value of the 𝐴 parameter in the 

positions indicated. The figure 3 shows the result for an 
initial model very close to the background model, while the 
figure 4 shows the result for an initial model closer to the 
target. Tables 2 and 3 show the target, initial value and the 
result obtained for the 𝐴 parameter. The graph of figure 5 

shows the reduction of the objective function for each 
iteration, comparing the 2 experiments. 

 
Figure 3 - Experiment 1: a) Target; b) Initial model close 
to the background model; c) Result; d) Error. 

Table 2 - Data for experiment 1 with initial model close to 
the background model. 

Location 
x(m) 

Location 
z(m) 

Target 
(m/s) 

Initial 
value 
(m/s) 

Result 
(m/s) 

600.0 1100.0 300.0 1.0 300.559 

1400.0 1100.0 300.0 1.0 300.002 

900.0 700.0 0.0 1.0 1.18312 

 

 
Figure 4 - Experiment 2: a) Target; b) Initial model with 
perturbation towards the correct model; c) Result; d) Error. 
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Table 3 - Data for experiment 2 with perturbation towards 

the correct model. 

Location 
x(m) 

Location 
z(m) 

Target 
(m/s) 

Initial 
value 
(m/s) 

Result 
(m/s) 

600.0 1100.0 300.0 120.0 298.303 

1400.0 1100.0 300.0 120.0 299.998 

900.0 700.0 0.0 120.0 3.60441 

 

 
Figure 5 – Objective function value for each iteration 
comparing experiments 1 and 2. 

The next two experiments are composed of a horizontal 
feature of lower velocity than the background. The goal is 
to simulate a lens or a slower velocity layer of rocks. It 
consists of 3 points with 𝜎𝑥=200 and 𝜎𝑧=100. The support 

region for the inversion is 200m. The position of the points 
is shown in the tables 4 and 5. The acquisition device is 
composed by 10 sources from the coordinate 𝑧=0.0 with 

an interval of 200m and 10 receivers from the coordinate 
𝑧=0.0 equally spaced at each 200m. A hundred rays is 

needed with this device. First an initial model close to the 
background model is used (Fig. 6) and, in the sequence, 
an initial model with perturbation towards the target (Fig. 
7). The tables 4 and 5 present the data. The graph of figure 
8 compares the objective function for each iteration, for 
both cases. 

 
Figure 6 - Experiment 3: a) Target; b) Initial model close to 
the background model; c) Result; d) Error. 

Table 4 - Data for experiment 3 with initial model close to 
the background model. 

Location 
x(m) 

Location 
z(m) 

Target 
(m/s) 

Initial 
value 
(m/s) 

Result 
(m/s) 

750.0 1000.0 -300.0 -1.0 -315.205 

1000.0 1000.0 -300.0 -1.0 -249.122 

1250.0 1000.0 -300.0 -1.0 -315.550 

 

 
Figure 7 - Experiment 4: a) Target; b) Initial model with 
perturbation towards the correct model; c) Result; d) Error. 

Table 5 - Data for experiment 4 with perturbation towards 
the correct model. 

Location 
x(m) 

Location 
z(m) 

Target 
(m/s) 

Initial 
value 
(m/s) 

Result 
(m/s) 

750.0 1000.0 -300.0 -100.0 -297.468 

1000.0 1000.0 -300.0 -100.0 -252.647 

1250.0 1000.0 -300.0 -100.0 -296.715 

 
Figure 8 - Objective function value for each iteration 
comparing experiments 3 and 4. 

According to the results of experiments 1 and 2, we 
observe that the inversion approach described here is able 
to approximate the correct values of the parameter 𝐴. From 

the graph of the figure 5 we find that both examples have 
a similar value for the objective function after some 
iterations, although, for the initial model close to the 
background it is necessary more iterations to find this 
result. 
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For experiments 3 and 4, it is shown that is possible to 
recover the desired feature, although the amplitudes do not 
exactly match the target. The center point has larger 
amplitude than the lateral points for both cases, with a 
smaller error for experiment 4. The 200m support region 
adopted has influence in the result, since we can see that 
one point compensates the amplitudes of the others in the 
process of inversion. 

 

Conclusions 

Gaussian FBR proved to be a useful tool for representing 
velocity model. For smooth models, few parameters can be 
used with storage and computational resources savings. 
The technique is suitable for generating initial models. In 
addition, there is flexibility in parameterization, since there 
is no need for a priori information to position the function 
centers. One possibility is to concentrate points in regions 
of higher velocity contrast and to space them in the more 
monotonous portions, which would lead to a more 
optimized inversion process. 

Circular features can be complex to discretize using a 
regular grid. In this case, it would be necessary very small 
cells. Radial based functions represent this kind of feature 
very well. Some examples are volcanic rocks, bodies of 
salt, lenses and diapers. 

Tomographic inversion based on the Gaussian FBR may 
be a useful tool to find velocity anomalies. It presents great 
flexibility in parameterization and identifies anomalies 
where they are present, without changing the model when 
they are absent. These results suggest its utility as a 
mechanism of quality control or search for anomalous 
regions in velocity models. 
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