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Abstract

A quiet revolution in high-performance computing (HPC),
as carried out in academic and industry environments, is
taking place in response to the ever-growing opportunities
offered by cloud providers. More specifically, one has
the choice of replacing physical, in-house computer
infrastructure by virtual-machine (VM) clusters that are
assembled and used for on-demand tasks. In principle,
benefits of the cloud include unlimited computation power,
no maintenance costs and cutting-edge technology for
carrying out individual computational tasks. As significant
price differences are attached to different VM specifications
and their time allocations, a key issue of a cloud solution
is to find the configuration solves a given application with
optimal cost/benefit for the user. In this paper, a problem
of parameter estimation of seismic reflection data is solved
using five selected VM configurations and a performance
analysis of the results is carried out. We hope that type
of analysis may contribute to the best-possible use of the
cloud in a variety of applications.

Introduction

For a long time clusters have been the primary option
when executing seismic processing programs, many of
them offering both multi-core processors and graphics
processing unit (GPU) accelerators. However, the clusters
are expensive to build and maintain, while having a
limited lifespan regarding its specifications. Taking into
consideration how fast technologies evolve, a cluster
can be outdated a few years after it has been bought,
requiring special care when selecting its components
to guarantee good performance for the whole project.
Recently, however, we have seen an alternative to this kind
of hardware: cloud computing.

Public cloud providers, such as Microsoft Azure (MA) and
Amazon Web Service (AWS), offer part of their data-
centers resources to users as virtual machines (VMs),
pricing these machines differently based on hardware
configuration and, usually, in time contracts (usually
advertised in price per hour and charged per second of
use). A huge advantage to the cloud computing model
is the opportunity for users to configure their VMs with
any available hardware, enabling them to configure the
infrastructure dynamically for the program being executed.

However, the amount of VM options can lead to higher
charges while offering lower processing power, therefore
a good selection is important to optimize not only costs but
also execution time (see, Okita et al., 2018).

Graphics processing units accelerators are highly parallel
devices that offer from hundreds to even thousands of
computing threads within a single chip while consuming
less power when comparing to central processing units
(CPUs) of similar performance. Due to a large number of
threads, they can be used to decrease the execution time
of parallel programs.

Some public cloud providers have GPU accelerated
instances available, hence it is possible to use them to
improve the execution time of workloads that can take
advantage of these devices. Since they are priced similarly
to CPU instances, their usage can come without additional
costs. This work objective involves the usage of GPU
accelerated instances to reduce the execution time and
processing cost of a seismic processing algorithm in the
Amazon Web Services Elastic Computing Cloud (AWS
EC2).

Formulation of the problem

For a given 2D seismic data set and pose of estimating
the kinematic attributes (or parameters) of traveltime,
normal-moveout (NMO) velocities, slopes, and curvatures
of reflection events in the post-stack and prestack
domains. For simplicity of exposition, we assume that one-
component (e.g, pressure or vertical-component elastic)
data and that events of interest are non-converted primary
reflections. In this case, data samples can be expressed as
u(m,h, t), in which u represents the observed amplitude, m
is the midpoint location, h is the half-offset distance and t is
the time sample, all these beings, for theoretical reasons,
continuous variables. Under these circumstances, our
problem consists of estimating the kinematic parameters
of each sample at which arrival of a reflection or diffraction
of interest is observed. As such arrivals are not to be a
priori identified, the estimation procedure is carried out at
all data samples, each of them supposed as a candidate
location of the desired reflection. The above estimation
problem is of great interest for advanced processing tasks,
such as tomographic velocity-model building (e.g, Billette
and Lambaré, 1998 and Dell et al., 2014) and data
regularization (e.g, Zhang et al., 2001 and Coimbra et al.,
2016).

Coherency

A key property of reflections (as well as other seismic
events) is that they present themselves as coherent signals
along their traveltime surfaces within the seismic data
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Figure 1: Flowchart of the Differential Evolution implementation in GPU, showing the algorithm steps of the Differential
Evolution mutation (”Mutate”), objective function computation (”Compute Semblance”) and selections (”Redux Population”,
”Redux Semblance”)

set. By the consideration of a quantitative coherence
measure, one can introduce an objective function so that
our parameter estimating problem is transformed into an
optimization problem. Namely, the desired parameters
should be the ones that the coherence (objective function)
is maximized. A second consequence is that we can also
use that physical principle to build an initial image of the
data by a stacking procedure. Stacking along the traveltime
surface strip that refers to reflection point and under the use
of optimal stacking parameters produces a high amplitude.
For points not on a reflection event, one gets a small
stacking result. These considerations form the basis of a
number of stacking imaging schemes available in seismic
processing.

The most popular coherence measure used in practice
is semblance (see, Neidell and Taner, 1971). To define
the coherence measure semblance, we suppose a given
fixed, reference data point location (m0,h0, t0) that belongs
to an (unknown) traveltime surface t = t(m,h) defined for
midpoint and half-offset pairs (m,h) in the neighborhood
of (m0,h0). In the same neighborhood, we now consider
a given traveltime surface T = T (m,h; p1, · · · , pn) in which
pi are given kinematic parameters. In addition, in discrete
form, the semblance between the two traveltime functions
is given by

S(p1, · · · , pn) =
∑

k=W
k=−W

[
∑

i=I
i=−I ∑

j=J
j=−J ui, j,k

]2

N ∑
k=W
k=−W

[
∑

i=I
i=−I ∑

j=J
j=−J u2

i, j,k

] , (1)

where N = (2I + 1)(2J + 1), ui, j,k = u(mi,h j,Tk)
represents the amplitudes computed at the data points
(mi,h j,Tk(mi,h j; p1, · · · , pn). Notations are as follows:

mi = m0 + i∆m, h j = h0 + j∆h,
Tk(mi,h j; p1, · · · , pn) = T (mi,h j; p1, · · · , pn)+ k∆t , (2)

In the above equations, ∆m, ∆h, and ∆t denote midpoint,
half-offset, and time (uniform) sampling, respectively. Note
that at these locations, actual data points may not exist. In
this case, these are replaced by interpolation values from
neighboring points.

Traveltime functions

It is now useful to say a few words about the traveltime
functions that employed for our parameter-estimation
experiments described below. The first two are the 2D
hyperbolic zero-offset (ZO) and finite-offset (FO) common-
reflection-surface (CRS) traveltimes (see, e.g, Jäger et al.,
2001; Zhang et al., 2001; and Faccipieri et al., 2018).
The former, denoted by ZO-CRS traveltime depends on
three parameters, these being the slopes and curvatures
that refer to all data points within the post-stack domain.
The latter is denoted FO-CRS traveltime and depends on
five parameters which refer to all data points within the
prestack domain (see, e.g, Zhang et al., 2001). A final
traveltime is a non-hyperbolic generalization of the ZO-
CRS traveltime, being denoted as ZO-NCRS traveltime.
Introduced in Fomel and Kazinnik (2012), ZO-NCRS
depends on the same parameters of ZO-CRS, i.e, three
parameters. Presentation and discussion on the the above
traveltimes are outside the scope of the present paper,
which is focused on the cloud-computational solutions of
the parameter-estimation problems associated with the
above traveltimes, for more details, see the related papers
aforementioned.

Table 1: Machine configurations

Configuration Processing Unit RAM
(GB)

Price
(USD/h)

CPU1
(c5.18xlarge)

72 Xeon Platinum
8124 3GHz vCores 144 3.060

CPU2
(m5.24xlarge)

96 Xeon Platinum
8175 2.5GHz vCores 384 4.608

GPU1
(p3.2xlarge)

1 Nvidia Tesla
V100 16GB 61 3.060

GPU2
(g3s.xlarge)

1 Nvidia Tesla
M60 8GB 30.5 0.750

GPU3
(p2.xlarge)

1 Nvidia Tesla
K80 12GB 61 0.900

Differential Evolution meta-heuristic

To find the best values for the objective function it is
possible to make use of heuristics to iterate through the
search space to find the best parameters combination.
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Figure 2: Flowchart of the Differential Evolution implementation in CPU, showing the algorithm steps in multiple CPU threads
each for a different CDP, consisting of generating an initial population for the current time sample, then Differential Evolution
mutation (”Mutate”), followed by computing the objective function (”Compute Semblance”) and Differential Evolution selection
(”Redux Population”), iterating through a defined number of generations and for each time sample

The Differential Evolution (DE) meta-heuristic is a global
optimization technique that relies on the dynamics of a
population (Storn and Price (1997)). It works by generating
NP individuals in a population, each characterized as a
vector of parameters, initially distributed randomly through
a search space. These individuals interact with each other
in processes called mutation and cross over. The first
involves a weighted difference between three population
members to generate new parameters, while the second
replaces the old parameters by the newly obtained ones.
After generating a new individual, a process called
selection verifies if that new parameter leads to a better
value of the objective function. If so, that new parameter
is kept, otherwise, it is not accepted. The processes of
mutation, cross over and selection applied to the whole
population is called a generation. The DE algorithm
executes these processes to a predefined number of
generations, choosing the parameters that achieve the best
of the objective function.

Methodology and Experiments

The programs to compute ZO- and FO-CRS parameters
using the DE algorithm are implemented in C++ and
compiled using the gcc compiler in its version 5.4.0 with
the optimization flag -O3. The GPU version has its
kernels is written in OpenCL 1.1. All implementations
are performed using the scalable partially idempotent task
system (SPITS) (see, Borin et al., 2016) programming
model to support execution in clusters. To use the PY-
PITS runtime (see, Benedicto et al., 2017) to execute the
program we use python 3.5.2. In the ZO configuration,
parameter estimation is performed, in addition to CRS, also
to its non-hyperbolic (NCRS) version (Fomel and Kazinnik,

2012).

Two data sets are used to execute the experiments. data
set St is a synthetic seismic prestack file of around fourteen
megabytes and around four thousand six hundred traces.
Meanwhile, data set Re is a real seismic prestack file of
around four hundred megabytes and around sixty thousand
traces.

Concerning cloud hardware to be assembled, we selected
a few CPU and GPU instances available on AWS EC2
On-Demand platform. The configurations used for the
testing are shown in Table 1, the prices defined in this
table were the ones practiced on February 25th, 2019.
We selected every GPU instance available for the current
instance generation while preferring two of the higher-end
CPU instances. The reason to select higher-end CPU
instances lies in the performance and price scaling in the
platform. Within the same instance type, the price scales
linearly according to the number of cores, which means,
an instance with twice as many cores will cost twice as
much. With our embarrassingly parallel algorithm, we
achieve almost linear scalability with the number of cores,
therefore our cost would remain relatively the same with
smaller instances.

In our experiments, the DE parameter estimations are
carried out for each hardware configuration displayed in
Table 1.

It is important to highlight that there are differences
between the GPU and CPU parallelism approaches,
leading to different workflows as depicted in Figures 1 and
2, respectively.
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The flowchart in Figure 1 shows how we implemented the
DE algorithm in GPU. In this figure, NP represents the
number of individuals in a population and NS the number of
time samples being processed in the current trace. The first
step consists of generating the initial population for each
time sample, which is done in the CPU. We then create
NP∗NS threads in GPU to compute the semblance for each
population member in each time sample. Next, we create
a new mutated population by mutating each population
member in each time sample concurrently, computing their
semblance and verifying if they are better than its original
population member. After running the defined number of
generations we verify the best population member for each
time sample, selecting it as our parameters combination for
that time sample.

Also, each dark green block represents a GPU kernel
in Figure 1. ”Compute Semblance” represents a kernel
that receives parameters combination and trace samples
to compute the semblance for these values. ”Mutate”
generates a new population member using the meta-
heuristic Differential Evolution. ”Redux Population” verifies
if a new population member is better than its predecessor.
At last, ”Redux Semblance” selects the best member of
each population to be returned as the best parameter
combination for the current time samples.

Meanwhile, the flowchart in Figure 2 shows the CPU
implementation. It’s important to notice that we achieve
parallelism by creating multiple threads to process
multiple CDPs at the same time, differently from the
GPU implementation which we achieve parallelism by
processing multiple time samples at the same time. In
each thread, we iterate through the time samples using
the Differential Evolution heuristic to search for the best
parameters combination. The heuristic works by iterating
through each population member, computing its new
mutated counterpart and verifying if it’s better than the
original using the semblance function, replacing it in the
population before going to the next population member
iteration. After repeating this for the defined number of
generations we return the parameters combination which
offered the best semblance value and iterate through the
next time sample.

Similarly to the GPU flowchart shown in Figure 1, we have
small blocks analogous to the GPU kernels. Blocks with the
same name have the same logical functionality as the GPU
kernel blocks. For example, the ”Mutate” block generates
a new population member using the Differential Evolution
meta-heuristic, similarly to the GPU kernel ”Mutate” block.

At last, we computed the parameter estimation cost as
the time spent processing multiplied by the cost of the
configuration shown in Table 1, disregarding additional
cloud costs such as storage.

Results

We divide the results into three subsections, each of
them corresponding to the use of a specific parametric
traveltime: the first two subsections employ the CRS
hyperbolic ZO and FO traveltimes, respectively. The
third and last one uses the non-hyperbolic zero-offset
CRS traveltime. The programs, data sets, and hardware
configurations are the ones described in the Methodology
and Experiments section. Our experiments show that, for

each of the input data sets, all implementations (including
both CPU and GPU) gives rise to estimation results with
negligible discrepancies. As such, those results are not
displayed and only the performance of the implementations
are analyzed.

Zero-Offset Common-Reflection-Surface

The execution times and related costs for the
configurations displayed in Table 1 applied to the two
input data sets are shown in Table 2. The illustrative
purposes, we show, for the real data set Re, the stacked
and coherency sections that are obtained using the fastest
configurations CPU1 and GPU1. Figure 3 for data set Re.

Table 2: Execution time and costs for ZO-CRS in data set
St

Configuration Data set Execution Time
(minutes) Cost (USD)

CPU1 Data set St 0.62 0.032
CPU2 Data set St 0.55 0.042
GPU1 Data set St 0.11 0.006
GPU2 Data set St 0.32 0.004
GPU3 Data set St 0.39 0.006
CPU1 Data set Re 17.01 0.868
CPU2 Data set Re 14.19 1.090
GPU1 Data set Re 1.25 0.064
GPU2 Data set Re 10.44 0.130
GPU3 Data set Re 12.16 0.182
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Figure 3: Comparison between CPU1 (left) and GPU1
(right) results for ZO-CRS in data set Re
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(right) coherence for ZO-CRS in data set Re

It is to be noted that GPU instance implementations lead
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consistently to lower costs and faster execution times,
than the ones corresponding to their counterpart CPU
instances.

Finite-Offset Common-Reflection-Surface

For the FO-CRS experiments, the better performance of
GPU implementation as compared to CPU implementation,
becomes much more evident. While having similar
parameter estimation results. In fact, GPU costs turn out
to be of the order of ten times less expensive than than
their CPU counterparts, the main reason being the much
shorter processing time. Table 3 shows the execution times
and costs for each configuration for both data sets St and
Re. A quick examination of Table 1) readily explains this
situation. In spite of the fact that, in the AWS EC2 platform,
both CPU1 and GPU1 have the same cost per hour, the
GPU1 configuration offers much shorter execution times
across the board, thus becoming much less expensive than
the CPU1 configuration. In the same way as in the previous
ZO-CRS case, stacked and coherency sections for the FO-
CRS are shown in Figures 5 and 5, respectively. In those
figures, results are shown for the few first (shorter) offsets
only, as these are sufficient for our illustration purposes.

Table 3: Execution time and costs for FO-CRS

Configuration Data set Execution Time
(minutes) Cost (USD)

CPU1 Data set St 14.36 0.732
CPU2 Data set St 13.61 1.05
GPU1 Data set St 1.13 0.058
GPU2 Data set St 8.76 0.109
GPU3 Data set St 10.00 0.150
CPU1 Data set Re 843.59 44.27
CPU2 Data set Re 688.01 55.58
GPU1 Data set Re 69.27 3.53
GPU2 Data set Re 583.97 7.30
GPU3 Data set Re 709.72 10.65

As a useful technical remark, we observe that the DE
implementation also used a queue system to keep the GPU
processing traces for each offset. More specifically, the
algorithm described by the flowchart in Figure 1 is executed
asynchronously for each offset, so as to keep the device
always busy and with reduced downtime, thus improving
general performance. In the CPU processing, we kept the
parallelism using multiple CPU threads to process each a
CDP, each thread looping through the offsets.

Zero Offset Non-hyperbolic Common Reflection Surface

This last subsection presents the results obtained for the
case of the zero-offset non-hyperbolic CRS. Table 4 shows
the execution time and cost for each configuration and data
set.

The stacked and coherency sections obtained for the real
data set Re are shown in Figure 7 and 8, respectively.
Consistently with the previous cases, we observe that GPU
configurations offer a much better performance (i.e., lower
costs and execution times) than their CPU counterparts.

Discussion

When comparing the CPU results for all three experiments,
we can see that while CPU2 offered faster performance
overall, with execution performance similar to the GPU2
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Table 4: Execution time and costs for ZO-NCRS

Configuration Data set Execution Time
(minutes) Cost (USD)

CPU1 Data set St 0.51 0.026
CPU2 Data set St 0.44 0.034
GPU1 Data set St 0.08 0.004
GPU2 Data set St 0.33 0.004
GPU3 Data set St 0.40 0.006
CPU1 Data set Re 14.93 0.761
CPU2 Data set Re 12.47 0.958
GPU1 Data set Re 1.31 0.067
GPU2 Data set Re 10.38 0.130
GPU3 Data set Re 12.79 0.192

and GPU3 configurations, standing usually closer to
the GPU3 results. However, in all cases the CPU2
configuration was the most expensive and such good
results do not justify its high cost. Furthermore, even
though CPU2 offers similar performance as GPU2 and
GPU3, its cost per hour is at least five times more
expensive. As a consequence, to match the execution time
of GPU2 and GPU3, the CPU2 will also cost five times
more. Note that in Figures 4, 6 and 8 both GPU and
CPU options had negligible differences in the coherence
calculation for the parameters chosen.

The GPU1 configuration granted the best performance
overall and usually the lowest cost, due to its shorter
execution times. In all data set Re scenarios, GPU1 offered
results at least ten times less expensive than both CPU2
and CPU1 or two to three times less expensive than even
the other GPU configurations. Additionally, comparing
CPU1 and GPU1 instances shows how even paying the
same price per hour, there are still large performance gaps
due to how the program can deal with parallelism.

In Table 5 the total cost for the best CPU and GPU
selections are compiled. For all programs the best option
for CPU was the CPU1 configuration, while the best GPU,
and overall, option was the GPU1 configuration.

Table 5: Best cost for data set Re comparing CPU and GPU

CPU GPU
Program Price Configuration Price Configuration
ZO-CRS 0.87 CPU1 0.06 GPU1
FO-CRS 44.27 CPU1 3.53 GPU1

ZO-NCRS 0.76 CPU1 0.07 GPU1

Conclusions

We implemented a GPU accelerated version of the
ZO-CRS, ZO-NCRS and FO-CRS programs to explore
what improvement we could get from embarrassingly
parallel programs. While it is well documented that
GPU acceleration can increase the performance of such
programs, we took a step further and explored how the cost
scaled with this performance increase.

Our results showed that we managed to complete our
tasks with shorter time spans and up to ten times less
money using GPU configurations than CPU configurations,
all while retaining similar outputs. Also, we noticed in our
experiments that even less powerful GPU configurations

can provide us performance comparable to higher end
CPU machines while costing only a fraction of the price.

In conclusion, the parameter estimation of seismic
processing algorithms can easily be accelerated using
GPUs, providing not only time reductions, but also
cost reductions when processing in environments such
as the cloud. Note that these cost results can vary
depending on the cloud provider, further investigation of
the comparison between cost-effectiveness of GPU versus
CPU configurations are needed, however, it is clear that the
GPU parallelism improves performance.
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