
Workload scheduling comparison in a full waveform inversion distributed memory
implementation
Carla Santana (UFRN), Tiago Barros (UFRN), Idalmis Milian (UFRN), Calebe Bianchini (Mackenzie Presbyterian University)

and Samuel Xavier-de-Souza (UFRN)

Copyright 2019, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation at the 16th International Congress of the
Brazilian Geophysical Society, held in Rio de Janeiro, Brazil, August 19-22, 2019.

Contents of this paper were reviewed by the Technical Committee of the 16th

International Congress of The Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

Full waveform inversion has gained attention in the
geophysics community as an efficient technique for
the determination of seismic subsurface velocity
models. However, the full waveform inversion
technique is computationally intensive, both in
terms of execution time and memory usage. In
order to obtain shorter execution times, usually the
full waveform inversion algorithm is implemented
using the concept of parallel programming. For the
implementation in distributed memory environments,
it is important to define the tasks (processes)
distribution among the computational nodes,
which is known as workload scheduling. The
workload scheduling approach directly impacts on
computationally intensive algorithms, such as the
seismic wave propagation, highly employed in full
waveform inversion. For a large number of nodes
and tasks, the full waveform inversion might suffer
of scalability issues. In this work we compare two
workload scheduling approaches for a parallel 2D
acoustic full waveform inversion implementation
running in a distributed memory system: the
centralized dynamic and the decentralized static.
The comparison is made by presenting speedup and
efficiency plots for different model sizes and number
of nodes. The scalability and performance analysis
showed that the decentralized static algorithm is
highly scalable and efficient in distributed memory
systems.

Introduction

Full waveform inversion (FWI) has been highlighted in
the geophysics community as an efficient technique for
mapping the Earth’s subsurface, in the search for oil and
gas reservoirs. The FWI technique is used to obtain
quantitative information from seismograms (Virieux and
Operto, 2009), for instance, the seismic wavefront velocity
model in the subsurface. It is based on numerical
optimization methods, which employ the misfit between the
observed seismograms and modeled data and use it to
iteratively estimate this velocity model. The modeled data
in FWI is mostly generated with the use of finite difference
methods (FDM) (Claerbout and Doherty, 1972), which are

computationally intensive, both in terms of execution time
and memory usage.

In order to obtain shorter execution times, usually the
FWI algorithm is implemented using the concept of
parallel programming. In this case, a parallel algorithm
might be implemented to be executed in shared and/or
distributed memory environments. Usually the employed
parallelization technique consists of executing the seismic
shots on different nodes of a computational cluster for
distributed memory parallelization; and propagating the
seismic wave by dividing the propagation domain among
the threads of a single node, employing the concept of
shared memory parallelization.

For distributed memory environments, it is important to
define the tasks (processes) distribution among the nodes,
which is known as workload scheduling (Tchiboukdjian
et al., 2013). One of the most used scheduling
techniques is the master-slave algorithm, in which the
tasks are distributed by one process (namely the master)
to be executed by the remaining ones (namely the
slaves) (Sahni and Vairaktarakis, 1996). This approach
is a centralized scheduling type, with the tasks being
dynamically distributed to the nodes. In this scheduling
technique, the master might be overloaded, since all
decisions are centralized on it. Depending on the
application type, a possible alternative to the master-slave
scheduling is to decentralize the workload distribution by
initially sharing the tasks among the processes. In this
later scheduling type, the workload is statically distributed
to each process, which evaluates the received tasks and
shares its results with all processes.

The workload scheduling approach directly impacts on
computationally intensive algorithms, such as the seismic
wave propagation (Tesser et al., 2014), highly employed in
FWI. For a large number of nodes and tasks, FWI might
suffer of scalability issues. In this work we investigate
the workload scheduling in FWI. We compare the master-
slave centralized dynamic scheduling (CD) approach to a
decentralized and static (DS) one, for the 2D acoustic FWI,
using distributed memory parallelization and implemented
with the message passing interface (MPI) library. For
this comparison, we employ a synthetic velocity model
and present speedup and efficiency plots, generated with
different model sizes and number of nodes.

FWI workload scheduling

In a simple manner, FWI consists into finding the model
vector m∗ which minimizes the following equation:

m∗ = arg min
m

||g(m)−d||22, (1)

Sixteenth International Congress of The Brazilian Geophysical Society

SANTANA ET AL. 2

where d are the observed seismic data and g(m) is the
operator representing the process of artificially modeling
the data, usually performed by propagating seismic waves
with numerical methods (Virieux et al., 2009). The function
being minimized is known as misfit and can be represented
as f = ||g(m)− d||22. This minimization problem might be
solved iteratively, with the use of the initial condition m0,
by an optimization method. In FWI, one of the most used
optimization methods is the gradient approach (Tarantola,
2005), which gives:

m j+1 = m j−α jg j, (2)

where the variable j≥ 0 defines the iteration number, m j is
the model vector at the j-th iteration and α j is a scalar that
defines the step size in the direction given by the gradient
g j.

In FWI, the gradient optimization approach is employed
to estimate the velocity model of the seismic wavefront
in the subsurface. Usually, the relationship between the
model in (1) and the velocity model v is given by mn =
1/v2

n. Note that these vectors are linearized matrices,
with n representing the space coordinates x and z, in
two-dimensions. At each algorithm iteration, the gradient
(g j) is computed with the adjoint-state method (Plessix,
2006), which uses the misfit (f j) between the recorded and
modeled data to update the velocity model employed in
the following algorithm iterations. The seismic data d is
composed by several seismograms, generated in different
seismic shots. The gradient and misfit are obtained
by summing the gradient and misfit evaluated in each
different seismic shot. Due to several wave equation
calculations, FWI presents high computational costs, which
can be reduced by paralleling the synthetic seismogram
evaluation. As previously discussed in the introduction, the
shots are allocated to the nodes by a workload scheduling
technique, which might be centralized or decentralized and
static or dynamic. At the end of each FWI algorithm
iteration, the f j and g j quantities, computed on the different
nodes, are added and used to update the velocity model.

Centralized dynamic scheduling

In this work, for the implementation of the master-slave
FWI parallel algorithm, with the CD scheduling of seismic
shots, a process (master) is chosen to distribute the shots
among the other processes (slaves). The Np processes are
divided into one master process, Pmaster, and Np− 1 slave
processes, Pk

slave, with k going from 1 to Np−1. The master
assigns to each slave one shot index (i) at a time, from a
total of Ns shots, i.e., i = 0, . . . , Ns−1. On its turn, the slave
computes the quantities f i

j and gi
j for the assigned shot and

returns the results back to the master. After receiving these
results, the master assigns a different shot to the slave.
This procedure is repeated for all the slaves, until there are
no remaining shots. Finally, the master is also in charge of
summing the misfit (f i

j) and gradient (gi
j) from the different

shots, in order to update the f j and g j quantities, in the j-th
FWI iteration. These summations are given by

f j =
Ns−1

∑
i=0

f i
j (3)

and

g j =
Ns−1

∑
i=0

gi
j. (4)

As a drawback, centralizing the decisions in only one
node might pose a bottleneck to the master, since the
communication between the nodes increases with the
growth of slave nodes. In Figure 1 we illustrate the master-
slave communication in the CD workload scheduling.

Figure 1: CD scheduling structure.

Decentralized static scheduling

In our implementation of the 2D acoustic FWI with
DS scheduling, the misfit and gradient evaluation are
decentralized and equally distributed between the Np
processes Pk, with k going from 0 to Np− 1. For the j-th
iteration of the FWI optimization algorithm, each process
parallel evaluates part of the quantities f j and g j, for one
or more shots, considering the model m j. The shots
assignment is performed according to the process number.
The quantities evaluated by each process are given by:

f k
j =

Nk
s−1

∑
i=Nk−1

s

f i
j (5)

and

gk
j =

Nk
s−1

∑
i=Nk−1

s

gi
j, (6)

where Nk
s is the number of the last shot assigned to the k-th

process and f i
j and gi

j are the misfit and gradient from the
i-th shot. Note that the process P0 computes the shots in
the indexes range of k = 0, . . . , N0

s −1, i.e., N−1
s = 0.

At the end of the j-th iteration, the quantities f j and g j are
evaluated by

f j =
Np−1

∑
k=0

f k
j (7)

and

g j =
Np−1

∑
k=0

gk
j (8)

and broadcasted to all the processes. Finally, each process
computes its own model m j+1, for the j + 1-th iteration.
However, since the workload is statically distributed at the
beginning of each FWI iteration, the DS scheduling might
present workload unbalance due to several factors, such
as heterogeneous systems, uneven shots distribution, etc.
The DS scheduling procedure is illustrated in Figure 2.
We implemented the DS scheduling with the MPI library
and the summation and broadcasting operations were
performed with the function MPI Allreduce.

Sixteenth International Congress of The Brazilian Geophysical Society

SANTANA ET AL. 3

Figure 2: DS scheduling structure.

Metrics for scalability analysis

The main objective of writing parallel programs is,
generally, to increase the code execution performance.
In order to achieve that, some metrics might be used to
compare different parallelization strategies. The most used
ones are the speedup and efficiency, which are defined as
follows.

Speedup

The speedup is the ratio between the gain of a parallel
algorithm and its sequential equivalent and is defined by

Sp '
Ts

Tp
, (9)

where Sp is the speedup, Ts is the execution time for
the sequential algorithm and Tp is the execution time for
the parallel algorithm. Considering p the total number
of processors, ideally, it is expected that Sp = p, which
means that the parallel program runs p times faster than
the sequential.

Efficiency

The efficiency is the ratio between the speedup and the
quantity of processors and is defined by

E =
Sp

p
. (10)

This metric can be viewed as the speedup normalized by
the number of processors and indicates how much each
processor is used. The ideal speedup is p, resulting in an
ideal efficiency of 1.

Numerical experiments

In order to analyze the performance of the FWI CD and
DS scheduling algorithms, for different velocity model sizes
and number of nodes, we created a synthetic layered
velocity model with no lateral velocity variation. We
generated a base model, named v1, with dimensions 525×
200, in x and z coordinates, respectively, and a sample
spacing of 10 m in both coordinates. As there is no
lateral velocity variation, we generated bigger versions of
v1 (named v2, v3 and v4) by increasing the number of points

Table 1: Wave propagation parameters for different velocity
models

Velocity
model

Mesh
size

Model
size

Memory
allocated in
propagation

v1 525×200 0,42MB 840MB
v2 1050×200 0,82MB 1680MB
v3 2100×200 1,7MB 3360MB
v4 4200×200 3,4MB 6720MB

in the x coordinate. We show the characteristics of these
velocity models in Table 1 and, in Figure 3, we illustrate v1.
In Figure 4 we show one common-shot gather artificially
computed with v1.

Regarding the FWI algorithm, we used the sample time
interval of 1 ms and we executed the wave propagation
for the total time of 1 s, resulting in seismic seismograms
with 1001 time samples. The FWI was executed with the
total of 2048 shots and a shot increment of 100 m. For
the parallel implementation, we used the OpenMPI version
1.8.5 and GCC version 4.9.3. The code was executed in
the computational cluster Yemoja, which has a total of 856
nodes, 132TB of RAM memory and is located in Salvador-
BA, Brazil, in SENAI-CIMATEC.

0 1 2 3 4 5

x [km]

0

0.5

1

1.5

z
 [

k
m

]

1500

2000

2500

3000

Figure 3: Illustration of one of the employed velocity model
(v1).

We analyzed the code performance considering the
speedup and the efficiency. The speedup and efficiency
graphics were generated for 2, 4, 8, 16, 32, 64, 128 and
256 nodes. In order to perform a more detailed scalability
analysis, the FWI was executed using four different model
sizes, from v1 to v4. For each different model, FWI was
executed five times and we used the median to plot the
speedup and efficiency.

In Figure 5, we show the CD and DS algorithms speedup.
The CD speedup for smaller problem sizes is closer to
the ideal one, when compared to the speedup for bigger
problem sizes. This is mostly because the master presents
more communication with the slaves in bigger problems,
which results in bigger overheads. This does not happen
for the DS scheduling, since the communication in DS
occurs only at the end of each FWI iteration.

Sixteenth International Congress of The Brazilian Geophysical Society

SANTANA ET AL. 4

0 500 1000 1500 2000 2500

receiver position [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ti
m

e
 [

s
]

Figure 4: Illustration of one common-shot gather from the
seismic data, computed with v1.

The CD efficiency depends on the communication
overhead that is related with the model size and the
quantity of nodes: for a large number of nodes in a big
model, the efficiency becomes worst, as the one for 128
and 256 nodes in the models v3 and v4. The DS efficiency
is more well-behaved, as shown in Figure 6. This is due to
the fact that DS scheduling presents less communication
than the CD one.

Conclusions

FWI technique is computationally intensive and requires
efficient scheduling methods. In this work we compared
two different workload scheduling approaches for a 2D
acoustic FWI implementation: the centralized dynamic
(CD) and decentralized static (DS). Our results, for a
synthetic velocity model, showed better scalability for
the DS scheduling. The DS also presented efficiency
values nearly constant, whereas the CD presented better
efficiency for fewer nodes and smaller models. For more
realistic problems, such as the 3D FWI, we expect a
similar behaviour. In other words, the larger the number of
nodes the more advantageous would the DS scheme be.
Nevertheless, producing the same results for a 3D code
would require either much more computing time or a much
larger machine.

Acknowledgements

The authors gratefully acknowledge support from Shell
Brazil through the project “Novos Métodos de Exploração
Sı́smica por Inversão Completa das Formas de Onda” at
the Federal University of Rio Grande do Norte (UFRN)
and the strategic importance of the support given by ANP
through the R&D levy regulation. This research was

0 50 100 150 200 250 300

Number of nodes

0

50

100

150

200

250

300

S
p

e
e

d
u

p

Speedup Layers CD

0 100 200 300

Number of nodes

0

50

100

150

200

250

300

S
p

e
e

d
u

p

Speedup Layers DS

Figure 5: Speedup for the layered velocity model.

supported by the High-Performance Computing Center at
UFRN (NPAD/UFRN).

References

Claerbout, J. F., and S. M. Doherty, 1972, Downward
continuation of moveout-corrected seismograms:
Geophysics, 37, 741–768.

Plessix, R.-E., 2006, A review of the adjoint-state
method for computing the gradient of a functional
with geophysical applications: Geophysical Journal
International, 167, 495–503.

Sahni, S., and G. Vairaktarakis, 1996, The master-slave
paradigm in parallel computer and industrial settings:
Journal of Global Optimization, 9, 357–377.

Tarantola, A., 2005, Inverse problem theory and methods
for model parameter estimation: siam, 89.

Tchiboukdjian, M., N. Gast, and D. Trystram, 2013,
Decentralized list scheduling: Annals of Operations
Research, 207, 237–259.

Tesser, R. K., L. L. Pilla, F. Dupros, P. O. A. Navaux,
J.-F. Méhaut, and C. Mendes, 2014, Improving the
performance of seismic wave simulations with dynamic
load balancing: Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International
Conference on, IEEE, 196–203.

Virieux, J., and S. Operto, 2009, An overview of

Sixteenth International Congress of The Brazilian Geophysical Society

SANTANA ET AL. 5

1 1.5 2 2.5 3 3.5 4

Velocity model index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
ff

ic
ie

n
c
y

Efficiency Layers CD

4 nodes

8 nodes

16 nodes

32 nodes

64 nodes

128 nodes

256 nodes

1 1.5 2 2.5 3 3.5 4

Velocity model index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
ff

ic
ie

n
c
y

Efficiency Layers DS

4 nodes

8 nodes

16 nodes

32 nodes

64 nodes

128 nodes

256 nodes

Figure 6: Efficiency for the layered velocity model.

full-waveform inversion in exploration geophysics:
Geophysics, 74, WCC1–WCC26.

Virieux, J., S. Operto, H. Ben-Hadj-Ali, R. Brossier, V.
Etienne, F. Sourbier, L. Giraud, and A. Haidar, 2009,
Seismic wave modeling for seismic imaging: The
Leading Edge, 28, 538–544.

Sixteenth International Congress of The Brazilian Geophysical Society

