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Abstract

Dimension reduction is a process used to simplify
high dimensional inverse problems in geophysics. In
this work, we analyze the impact of the model and
data reduction on the uncertainty quantification of
the inversion results. In the Bayesian approach for
inverse problems, the solution is given by the posterior
distribution and the uncertainty is interpreted as the
posterior variance. Under the Gaussian assumption
for the noise and prior distribution and if the
forward model and reduction operator are linear, we
analytically obtain the posterior distribution. We use
the analytical result to compute the solution of the
acoustic inversion problem with different reduction
levels of both data and model parameters. The method
allows us to analyze the impact of the linear reduction
on the uncertainty quantification of linear inverse
problems.

Introduction

Several geophysical applications can be faced as an
inverse problem, such as seismic inversion (Sen, 2006),
tomography (Nolet, 1987) and inversion of CSEM data
(Gunning et al., 2010). In all applications, we aim to
estimate the subsurface properties (model parameters)
based on geophysical measurements (observed data) and
theoretical relations (forward model) between the observed
and the unobserved parameters (Tarantola, 2005).

The common techniques to solve an inverse problem
include stochastic optimization methods, where the best
subsurface model is chased by minimizing the error/misfit
function (Sen, 2006; Azevedo et al., 2015; Bordignon
et al., 2017); and Bayesian sampling algorithms, where the
solution of the inverse problem is the posterior distribution
of the subsurface properties (Buland and Omre, 2003;
Tarantola, 2005; Bosch et al., 2010). In the Bayesian
approach, the uncertainty is interpreted as the posterior
variance, which is a inherent part of the solution (Gelman
et al., 2004; Tarantola, 2005; Doyen, 2007). Although the
Bayesian algorithms might be inefficient for general inverse
problems, it has been successfully applied to geophysical
problems during the last decades (Gunning and Glinsky,
2004; Bosch et al., 2010; Grana and Della Rossa,
2010; Grana et al., 2017; de Figueiredo et al., 2018b).
In particular cases where the forward model is linear

and under the Gaussian assumption for the prior and
noises, the posterior distribution is analytically obtained,
leading to very fast algorithms (Buland and Omre, 2003;
de Figueiredo et al., 2014).

Dimension reduction, or compression, is a mathematical
process used to reduce the number of variables of a
problem (Roweis and Saul, 2000; Tompkins et al., 2011).
In inverse problem, the reduction can be applied to both
model parameters or observed data. In methods based
on ensemble Kalman filter, the reduction of the data can
improve the efficiency of algorithm. On the other hand,
the efficiency of stochastic optimization methods depends
on the dimension of the model parameters (Marzouk and
Najm, 2009; Lieberman et al., 2010).

With the objective of analyzing the impact of the data/model
reduction on the uncertainty of the inversion results,
we discuss a general linear inverse problem assuming
a linear operator for dimension reduction. With these
assumptions, the posterior can be analytically treated by
applying Multivariate Statistics results (Anderson, 1984).
In the application section, we discuss the methodology
applied to the acoustic seismic inversion, where the forward
model can be linearized.

Methodology

Bayesian linear inversion

Assuming a general linear inverse problem, the objective
is estimating the model parameters m based on the linear
forward operator G and the observed data d:

d = Gm+ ed (1)

where ed represents the seismic noise and modeling errors.

In the Bayesian approach for inverse problems, the solution
is given by the posterior distribution

p(m|d) ∝ p(d|m)p(m), (2)

where p(d|m) is the likelihood distribution (relating the
model parameters to the observed data) and p(m) is the
prior distribution (relating the model parameters to prior
information).

If the noise ed of Equation 1 is normally distributed with
zero mean, we obtain the following Gaussian multivariate
likelihood distribution:

p(d|m) =
1

(2π)
nθ nd

2 |ΣΣΣd |
1
2

exp
(
−1

2
(d−Gm)T

ΣΣΣ
−1
d (d−Gm)

)
≡ N(d;Gm,ΣΣΣd). (3)

where ΣΣΣd is the covariance matrix of the seismic noise
(Buland and Omre, 2003).

Sixteenth International Congress of The Brazilian Geophysical Society



2

Assuming a prior knowledge about the model parameters,
such as a background model, we can also propose a
Gaussian prior distribution:

p(m) = N(m;µµµm,ΣΣΣm), (4)

where µµµm is the background model and ΣΣΣm is the prior
covariance matrix that can include spatial correlations
(Buland and Omre, 2003; de Figueiredo et al., 2018a).

Based on the statistical model presented in Equations
3 and 4 and applying standard results of multivariate
statistical analysis (Anderson, 1984), we can analytically
calculate the posterior distribution (Buland and Omre,
2003) of the Bayesian linear inversion (BLI):

p(m|d) = N(µµµm|d ,ΣΣΣm|d), (5)

where the expectation value µµµm|d and the covariance matrix
ΣΣΣm|d are:

µµµm|d = µµµm +ΣΣΣmGT (GΣΣΣmGT +ΣΣΣd)
−1 (d−Gµµµm) (6)

are
ΣΣΣm|d =ΣΣΣm−ΣΣΣmGT (GΣΣΣmGT +ΣΣΣd)

−1GΣΣΣm. (7)

Linear dimension reduction

Principal component analysis (PCA) is a mathematical
method that allows obtaining a set of uncorrelated variables
from observed correlated variables, which maintains the full
observed variance (Pearson, 1901). PCA can be applied
to the covariance matrix to reduce the dimension of the
problem by selecting only the first components that capture
most of the variance.

For example, from a set of observations of the (n×1)-vector
x with a mean µµµ and a (n×n)-covariance matrix ΣΣΣ, we can
apply the Eigen Decomposition theorem to ΣΣΣ:

ΣΣΣ = VΛΛΛVT , (8)

where V is the matrix of orthogonal eigenvectors (principal
components) and ΛΛΛ is the diagonal matrix with the
respective eigenvalues (variances).

By arranging the eigenvalues in decreasing order, we
can choose a subset of ñ eigen vectors (with ñ ≤ n) that
represents a fraction fv of the total variance:

∑
ñ
i=1 Λi,i

∑
n
j=1 Λ j, j

≥ fv, (9)

Then, any observation x can be represented a by a linear
combination of the ñ eigenvectors:

x = µµµ + Ṽx̃, (10)

where Ṽ is a (n× ñ)-matrix with the subset of ñ principal
eigenvectors (Tompkins et al., 2011), and x̃ is a (ñ× 1)-
vector that represents the sample x in a reduced linear
space.

To find the coefficients x̃ that represents a given sample x
in the reduced space, we can use the generalize inversion
of matrices:

x̃ = Ṽ−1(x−µµµ). (11)

where Ṽ−1 = ṼT (ṼṼT )−1 is the generalized inverse of the
non-square operator Ṽ.

Equations 10 and 11 define the linear operators to
transform and back-transform from/to the reduced space.
The scheme in Figure 1 illustrates the discussed framework
for linear dimension reduction.

Figure 1: Framework for linear dimension reduction based
on PCA.

Dimension reduction in inverse problems

• Data compression

Using the presented framework for data reduction, we
obtain

d̃ = Ṽ−1
d (d−µµµd), (12)

where Ṽd is the matrix of the principal eigenvectors for
a given fraction of total variance fv, which is defined
according to the Equations 8 and 9.

By applying Equation 12 to Equation 1 of a linear inverse
problem, we obtain

d̃− Ṽ−1
d µµµd = Hm+ ed̃ (13)

where H = Ṽ−1
d G and ed̃ = Ṽ−1

d ed is the reduced noise
vector with covariance ΣΣΣd̃ = ṼdΣΣΣdṼT

d .

Because all the operators are linear, we can derive the
multivariate Gaussian posterior distribution by using the
same results of multivariate statistical analysis that are
cited in the section Bayesian linear inversion (Equations 5-
7):

p(m|d̃) = N(m;µµµm|d̃ ,ΣΣΣm|d̃), (14)

where the expectation value µµµm|d̃ and the covariance matrix
ΣΣΣm|d̃ are:

µµµm|d̃ = µµµm +ΣΣΣmHT (HΣΣΣmHT +ΣΣΣd̃)
−1

(
d̃− Ṽ−1

d µµµd −Hµµµm

)
(15)

and
ΣΣΣm|d̃ =ΣΣΣm−ΣΣΣmHT (HΣΣΣmHT +ΣΣΣd̃)

−1HΣΣΣm. (16)

Equation 14 is the solution of the inverse problem for the
model parameter m given a dimension reduction of the
observed data d.

• Model compression

Applying Equation 10 to the model parameter, we obtain

m = µµµm + Ṽmm̃, (17)

where Ṽm is the matrix of the principal eigenvectors for
a given fraction of total variance fv, which is defined
according to the Equations 8 and 9.
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From Equations 1 and 17, we can write the forward model
as

d−Gµµµm = Fm̃+ ed , (18)

where F = GṼm, m̃ is the reduced model parameter with
Gaussian prior distribution

p(m̃) = N(m̃;0,ΣΣΣm̃), (19)

and the covariance ΣΣΣm̃ is a diagonal matrix with the
eigenvalues of the prior covariance ΣΣΣm.

Given Equations 18 and 19, we can derive the posterior
distribution of the reduced model parameter m̃ by using
the standard results of multivariate statistical analisys
(Equations 5-7).

p(m̃|d) = N(m̃;µµµm̃|d ,ΣΣΣm̃|d), (20)

where the expectation value µµµm̃|d and the covariance matrix
ΣΣΣm̃|d are

µµµm̃|d =ΣΣΣm̃FT (HΣΣΣm̃FT +ΣΣΣd)
−1 (d−Gµµµm) (21)

and
ΣΣΣm̃|d =ΣΣΣm̃−ΣΣΣm̃FT (FΣΣΣm̃FT +ΣΣΣd)

−1FΣΣΣm̃. (22)

From the posterior distribution of the reduced model and
the Equation 17, we obtain the posterior distribution of the
model parameter given the linear transformation between
the variables, then

p(m|d,m̃) = N(m;µµµm|d,m̃,ΣΣΣm|d,m̃), (23)

where
µµµm|d,m̃ = Ṽmµµµm̃|d +µµµm (24)

and
ΣΣΣm|d,m̃ = ṼmΣΣΣmṼT

m. (25)

Application

To analyze the theoretical results of the methodology
section, we apply the linear Bayesian inversion and linear
dimension reduction to the acoustic seismic inversion
problem. In this case, the observed data d is the full stack
seismic data that can be modeled by the convolutional
model based on the acoustic impedance values (model
parameter m) of the subsurface (Buland and Omre, 2003;
de Figueiredo et al., 2014, 2018a). The convolutional
forward model can be linearized assuming reflectivities
lower than 0.3. Assuming that the seismic noise and
the prior distribution of the model parameters are both
Gaussian, we can apply the methodology presented in this
paper.

To validate the inversion results, we apply the methods to a
synthetic case of acoustic impedance with a signal to noise
of 10. The reference model in shown in black curves in the
Figure 2, where the reference seismic trace is on the left
and the log P-impedance on the right. In the same figure,
we show the traditional BLI (without dimension reduction) in
blue, and we observe a good match between the reference
model and the estimated one.

Figures 3 and 4 show the results of the BLI with dimension
reduction with fractions of the total variance of 0.9 and 0.75,
respectively. In both results we can observe a smoothing

Figure 2: Sythetic case of acoustic inversion, seismic data
(left plot) and log P-impedance (right plot). The reference
data is in black and the inversion results of the traditional
BLI is in blue with the confidence interval of 68% (dashed
lines).

Figure 3: BLI results with dimension reduction with a
fraction 0.9 of the total variance. Model reduction results
in red and data reduction in green. Dashed lines represent
the confidence interval of 68%.
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effect in the impedance models and synthetic seismic
data. The uncertainty of the estimates is represented by
the dashed lines in the plots, which show the confidence
interval of 68%. In both figures, we can visually conclude
that the posterior variance is lower when reducing the
model.

In fact, by calculating Equation 16 and 22 for several values
of fraction of total variance used for dimension reduction,
we obtain the result of Figure 5. Posterior variances of
inverse problem solutions with data and model reduction
converge to the traditional BLI. However, when reducing
the observed data, the posterior variance is higher than the
traditional BLI, whereas it is lower when reducing the model
parameter. This effect can be explained by the fact that
the inverse problem becomes well posed when we reduce
the model parameters, and ill posed when we reduce the
observed data.

Figure 4: BLI results with dimension reduction with a
fraction 0.75 of the total variance. Model reduction results
in red and data reduction in green, Dashed lines represent
the confidence interval of 68%.

Conclusion

Assuming that the forward model and the dimension
reduction operator are both linear, and under the Gaussian
assumption for the observed noise and prior distribution
of the model parameters, we analytically compute the
solution of the linear inversion problem. The preliminary
application to the acoustic inversion shows that the effects
on uncertainty quantification are differents for data and
model reduction. The results indicate that the uncertainty is
under estimated when the reduction is applied to the model
parameters, whereas the reduction of the observed data
causes higher variances due to the lack of observations.

Figure 5: Posterior variance versus the fraction of the total
variance used for reduction. Model reduction results in red
and data reduction in green.
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