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Abstract

This work attempts to answer the question: “is it possible
to invert seismic geophysical data by using differential evo-
lution algorithms?”. Such algorithms compose a subclass
of the more general set of evolutionary optimization algo-
rithms, which implement several mechanisms inspired by
biological evolution in order to minimize an objective func-
tion previously defined. As a recent method study, this work
attempts to perform an inversion on a synthetic data, there-
fore goes through steps of the P-wave equation modeling
process. Finally, four synthetic seismograms were success-
fully inverted through an implementation of the differential
evolution algorithm.
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Seismic Inversion, Finite-difference Method, Accoustic
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1 Introduction

This work’s goal is to solve a inversion problem from syn-
thetic seismogram data generated by a punctual source.
This modeling was then be used to generate four 3-
layered parallel-plane horizontal seismic models’ seismo-
grams. Those will serve as input to the final problem this
work attempted to solve: recovering the models’ parame-
ters which gave origin to each of the seismic data modeled
— task that was done by an evolutionary algorithm.

The modeling of seismograms was made by appling the
finite-difference method solving the 2D acoustic wave equa-
tion over an arbitrary seismic velocity field. The basic refer-
ence for this part can be found on Santos (2002) and An-
drade (2002).

With four synthetic seismograms, one for eachmodel, it was
time to invert the data: to find the original models capable
of reproducing the seismograms calculated. This part was
made by using a differential evolution algorithm — a sub-

class of the evolutionary algorithms class that base them-
selves on evolution in order to find an optimized solution
for difficult non-linear algebra problems like most seismic
inversion ones. Theoretical basis for implementing a differ-
ential evolution algorithm can be found on Storn and Price
(1997). This work was also based on the works of Whitley
(1994), which talks more openly about evolutionary compu-
tation, and Soares (2018), where the author uses differen-
tial evolution in order to solve his media porosity equation
parameters.

It is important to use the inversion method proposed here
among synthetic seismic data, once the inverted parame-
ters can be compared to the true seismogram generator
model ones, as they were known since the beginning. This
is a first step in order to invert real seismic data to get real
subsurface information.

2 Methodology

The methodology used in this work are strongly based on
the fundamentals of inversion theory. The adopted forward
modeling was the P-wave propagation equation, which was
solved through the finite-difference method. Subsequently,
the forward modeling was then used to generate synthetic
seismic data from a velocity model with four horizontal
plane-parallel layers. Finally, by using the differential evo-
lution algorithm, the inverted velocity model was generated
and compared with the original one.

2.1 Theoretical and Practical Tools Used

2.1.1 Direct and Inverse Modeling

On one hand, geophysical forward modeling is the process
of predicting the expected physical response of the method
through the usage of Physics equations along with the seis-
mic model, which is usually described in a mathematical
equation. On the other hand, geophysical inverse modeling
is about finding the mathematically described model which
produces a certain measurable physical response. Figure
1 ilustrates forward and inversion modelings.

In the first part of this work, the construction of a seismic
forward modeling operator (g) is made. In the second part,
the inversion operator (g−1) is produced. For further reading
on inversion theory, it is suggested to see the first chapter
of Menke (2012).
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Figure 1: g is a function of the forward model, m, which
returns a prediction of the measured data (a seismogram
in this case), d. g−1 is its inverse function (a function that
returns the velocity model m from the data d).

2.1.2 The Acoustic Wave Equation

Seismic data can be simulated by solving the wave equa-
tion, which is written as:

∂2P

∂2t
= v2∇2P, (1)

where P and v are the pressure and the media seismic ve-
locity fields, respectively, and t, the time.

In this analytical form, the solutions that one could find
to this wave equation, given the problem’s initial and con-
tour conditions, usually are very limited. However, given the
complexity of both the subsurface media and the seismic
pulse, the more general approach is to use numerical meth-
ods to solve the equation. Among the various methods to
solve it, the finite-difference method was chosen.

2.1.3 The Finite-Difference Method

The finite-difference method (FDM) is a method to numer-
ically solve partial differential equations for fixed variable
intervals. The idea used is to approximate the limit that de-
fines a derivative for a multi variable real function f(x, y),
as shown in the Eq. (2),

∂f

∂x
(x, y) = lim

∆x→0

f(x+∆x, y)− f(x, y)

∆x
, (2)

an expression that is analytically equal to

∂f

∂x
(x, y) = lim

∆x→0

f(x, y)− f(x−∆x, y)

∆x
, (3)

to
∂f

∂x
(x, y) ≈ f(x, y)− f(x−∆x, y)

∆x
, (4)

where ∆x is, in Eq. (4), a very small fixed value. Similar
approximations can be done with higher order derivatives
— which will be the case bellow.

In the 2D plane xz (x denoting a horizontal direction and z
the depth), Eq. (1) becomes:

∂2P

∂t2
= v2

(
∂2P

∂x2
+

∂2P

∂z2

)
. (5)

Making the approximations described in Eq. (4), the previ-
ous equation is translated to:

P (x, z, t) = 2P (x, z, t−∆t)−
P (x, z, t− 2∆t)+

v2∆t2∇2P (x, z, t−∆t)

(6)

where∆t is very small number, and∇2P (x, z, t) is the lapla-
cian of the P field at (x, z, t) or, in FDM terms:

∇2P (x, z, t) =
1

h2
[P (x− 1, z, t)+

P (x+ 1, z, t)+

P (x, z − 1, t)+

P (x, z + 1, t)−
4P (x, z, t)],

(7)

h being a very small fixed real number.

The advantage of writing in this form is that the P-wave
value at any point on the pressure field only depends on
previous values (in time). Consequently, if the initial con-
ditions of the problem are known, its future states can be
calculated. Actually, as a 2nd degree differential equation
solution, 2 values are needed for initial conditions. In the
analytical form, these are the pressure value and the first
derivative of the pressure in respect to time. In FDM terms,
those two are translated to the initial pressure value and its
values one∆t before — values that allow the calculation of
the first derivative itself.

The next step is to create a mesh (be it a square one) over
which the solution will be calculated by looping. If the solu-
tion wanted is the one after a given signal have disturbed
the system, right before every loop, it is important to set the
disturbance at the previous time frame calculated.

2.1.4 The Laplacian

In calculus, the laplacian of a field is a measurement of its
“curvature” at a point. It is calculated over any orthogonal
spacial directions (as x and z in last example). Looking at
a 2D square mesh, there are 2 main ways to calculate the
laplacian: using mesh concordant directions or the diagonal
ones as illustrated in the Figure 2.

The points that were used to calculate the laplacian over
the diagonal directions are

√
2 times more distant than the

concordant ones. Hence, a more precise way to calculate
the laplacian is to make a weighted average of both the di-
agonal and concordant ones, the weights being the inverse
of the distance to the points used.
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Figure 2: Concordant (green) and diagonal (orange) vec-
tors to the mesh.

2.1.5 Unwanted Border Reflections

From the wave equation presented in Eq. (1) itself, not all
the wave effects, like reflection and refraction, are trivially
known. Nevertheless, many of then are intrinsic to the wave
equation, as can be shown via FDM. This is usually much
desirable; however, since the model is finite, therefore hav-
ing borders, in order to avoid unwanted reflection on those
(like the ones illustrated on Figure 3), a simulated border-
less medium is needed. To do so, the pure FDM must be
modified.

Figure 3: Seismic source shot and propagation through a
model of two geological layers, purely calculated via FDM.
Arrow point to unwanted border reflections. Picture plotted
with Matplotlib.

A way to achieve this, is through dumping the wave propa-
gation at the borders. It is made by multiplying a dumping
factor to the v2∆t2∇2P (x, z, t − ∆t) term of Eq. (6) solely
on the calculations of mesh cells in a layer near the border.
This factor was calculated as in Santos (2002) rewritting of

Cerjan et al. (1985): w = e−(fat (namort−d))
2

—where w is the
dumping factor, fat is the dumping coefficient, namort is the
dumping layer thickness and d is the point distance from
the border.

The dumping diminishes the wave velocity each time more
after it enters the layer, without sending sensible reflections
back. Therefore, the wave is held near the border for some
time and then it is unleashed. The best dumping coefficient
depends on the length of the dumping layer, and the con-
figuration used in this work was:

• dumping layer length: 100 mesh cells;
• dumping coeficient: 0.023.

The best configurations usually occurred when the product
of dumping layer length and dumping coefficient was equal
to 2.3.

The implemented method to remove border effects that
seemed more appropriate was to not only use the wave
propagation attenuation on the borders, but also to make
the mesh bigger than the mesh that describes the model
uses — in brief, all the attenuation was being done outside
the model zone of the mesh.

2.2 Acquiring Synthetic Seismic Data

With the 2D P-wave function solved across time (t), and
space (x and z), if one wants to get the response that a
receptor in the surface would get, one could just choose z
to be equal to the position of the receptor in the z axis, —
the resulting solution is a seismogram, as shown in Figure 4
— and then set a horizontal position x in themesh to receive
the travel times of the arriving waves.

Figure 4: The seismogram is the xt face of P-wave solution
prism.

2.3 Inversion with Differential Evolution (DE)

An evolutionary algorithm is a major set of algorithms
whose structures are inspired by biological evolution Whit-
ley (1994, p. 1), as making usage of key evolutionary pro-
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cesses such as random mutation and crossover. The differ-
ential evolution algorithm is part of this major set, being very
useful optimization tools that can be used for searching in
big continuous spaces. Their usual structure is:

1. generation of initial population of vectors covering the
entire search space. They are called initial target vec-
tors;

2. mutation of initial values of each vector by adding a
weighted difference function of two other vectors from
the initial population (this difference is a measure of
the parameters mutation amplitude, which must con-
verge with time);

3. crossover of the mutated vectors and target ones
by randomly exchanging some parameters between
both to generate trial vectors;

4. selection: each trial vector is evaluated by a fitness
function and compared with the evaluation of its asso-
ciated target vector, which will be substituted by the
best suited between the two;

5. repeat steps 2 to 4 until evolution converges to a so-
lution;

These steps can be expressed by Figure 5.

Figure 5: Scheme for a differential evolution loop (STORN;
PRICE, 1997).

While an objective function is a function that is associated
with a mathematical problem and has its critical values with
the parameters that solve this problem, a cost function is an
objective function that has a global minimum with its associ-
ated problem solution as parameters. Cost functions serve
as ways to evaluate the opposite of the fitness of a parame-
ter vector. Thus, selection would strive to get the parameter
vectors that return the minimal cost function value (the max-
imum fitness).

This work’s problem was finding four 3-layered parallel-
plane horizontal seismic model’s parameters based on their
synthetic seismograms. In brief, the parameters were: 2 su-
perior layer thicknesses, h1 and h2, and the P-wave propa-
gation velocity of the 3 layers, V1, V2, V3, as shown in Figure
6

Figure 6: General 3-layered parallel-plane horizontal geo-
logic model’s seismic parameters scheme. Picture plotted
with Matplotlib.

The cost function used was the Frobenius norm of the dif-
ference between the seismogram data (represented as a
matrix inside the program) and the one generated from pa-
rameters of the imposed geologic model (another matrix).
The Frobenius norm of a matrix (symbolized as ∥A∥F , A
being the matrix) is calculated by:

∥AN×N∥F =

√√√√ N∑
i=1

N∑
j=1

a2
ij (8)

and represents a distance from 0. Therefore, as the seis-
mograms match, their difference must tend to 0, and when
it happens, the parameters associated are the results of in-
version.

Details on the entire differential evolution process can be
found on Storn and Price (1997). The negative side of this
method is that there is no guarantee that the most opti-
mized solution will ever be found, since the evolution may
get stuck in local minimums.

The maximum number of iterations used for the evolution-
ary algorithm was 50.

3 Results

3.1 Modeling

A wave propagation function was programmed in Python,
using FDM. This function was used to generate seismo-
grams. An example is plotted on Figure 8. For all generated
seismograms, the spacing between geophones was set to
10 m.

The source signature used to be propagated was arbitrarily
chosen to be Psignal = t1/te−t2 , with 0 < t < 3, and to last
300 ms in each shoot. The plot of this signal can be seen
on Figure 7.

3.2 Inversion

There is an well implemented version of the differential evo-
lution algorithm in Python, in scipy’s optimization library. It
is based on the work of Storn and Price (1997). Using the
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Figure 7: Source signature in pressure unit. Graph plotted
with Matplotlib.

Figure 8: Example of seismogram generated via FDM.
Numbers: three of the visible events — 1: direct wave; 2:
reflected wave; 3: refracted wave. Picture plotted with Mat-
plotlib.

algorithm to invert the seismic data led to Table 1. The used
search interval bounds were 0 to 1000 m (counting in tens)
for the thicknesses and 0 to 8000 m/s to the velocities.

Although inversions 2, 3 and 4 went well, getting very near
the expected values, the first inversion process got stuck
in a local cost function minimum: the first interface was ig-
nored, and the second one was taken as first in its place.
For this reason, the first inversion’s h1 parameter actually
is related to the model’s second interface depth (model’s
h1 + h2). Because of this, all the other parameters, but V1

were mistaken.

The phenomenon occurred in first inversion is called pre-
mature convergence. In summary, the solution interval is
sampled into a population of vector parameters in the dif-
ferential evolution algorithm. None of the vectors were near
to the global cost minimum as some were to the local one.
In addition, the evolution kept converging to that leading so-
lution until the iterations ended. Notice the very low contrast
between V2 and V3: they were led to be computed to adapt
to the multiple reflections residues, instead of the first real
reflection, as seen in Figure 9. A way to diminish the prob-
ability to fall into a local minimum of this kind is to increase
the vector initial population.

Although all the data above was calculated using the aver-
age laplacian, it is important to notice that there was a signif-
icant difference between seismograms generated with that
operation and the ones generated with the traditional con-

M\P h1 h2 V1 V2 V3 C
(m) (m) (m/s) (m/s) (m/s)

M1 500 500 2500 3000 5700
M1,i 960 880 2630 5242 5551 0.015
M2 400 600 4000 3000 7000
M2,i 410 590 4095 2954 7000 0.006
M3 300 900 5700 2500 3000
M3,i 300 880 5692 2451 3091 0.001
M4 450 850 2500 3000 5700
M4,i 450 870 2503 3062 6044 0.004

Table 1: Seismogram paramaters and associated inversion
parameters gotten. Mj , j = 1, 2, 3, 4 stands for the j th tar-
get model, while Mj,i, j = 1, 2, 3, 4 stands for the inverted
model of Mj , based on its synthetic seismogram. In the ta-
ble, C is the cost function of the inverted model.

Figure 9: M1 and M1i associated seismograms. Picture
made with Matplotlib.

cordant laplacian. The Frobenius norm of the difference of
two seismograms generated with the same parameters, but
with different laplacian calculation methods, was evaluated
to be about 0.36. This value, when compared with the cost
function values of the inverted seismograms, might be sig-
nificant.

Conclusions

In the present work, it was possible to do forward modeling
through solving the 2D acoustic equation in order to obtain
seismograms associated with different seismic models. It
was made by using the finite-difference method. From this
achievement, 4 plane-parallel horizontal 3-layered model
seismograms were generated.

It was shown that differential evolution algorithms can in-
deed solve geophysical inversion problems on synthetic
data. Nevertheless, it is important to know their risks: these
methods are not guaranteed to get the most optimized
model, as seen in the first inversion results. Increasing pa-
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rameter vectors population can diminish this risk.

Two ways of calculating the laplacian have been utilized, in
spite of both being versions of the finite-differences method
of solving the wave equation. The first was to calculate
on the concordant discrete laplacian (as traditionally calcu-
lated) and the second was the average discrete laplacian
(a weighted average of the mesh concordant and diagonal
laplacian values). By taking the Frobenius norm of the differ-
ence between seismograms generated with both discrete
laplacian calculation methods returned a significant value
difference, when compared to the cost function calculated
at the end of the inversions that were made.

Further scientific research is now necessary to show the
validity of evolutionary computing methods for inversion in
other geophysical methods. In the near future, it may be
also applied for real data problems.
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