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Abstract

This paper presents an analysis of the Quasi-Newton
BFGS Limited Memory method to invert geophysical
electromagnetic data, in comparison with the traditional
Gauss-Newton approach. The application is to inversion
of magnetotelluric data, as an illustration of the methods.
The comparison is in terms of the number of operations
performed in each iteration of the inversion process and
the total number of iterations needed in each case to
achieve stable solutions. The results indicate that the
BFGS Limited Memory method can achieve the same
solutions with significantly less memory requirements than
the Gauss-Newton method, although with a bigger number
of iterations.

Introduction

The regularized Gauss-Newton method is widely used
in applications of geophysical inversion Constable et al.
(1987). In this method, it is necessary to assemble
two usually large matrices: 1) the Jacobian, or
Sensitivity matrix, which is composed of the derivatives
of the synthetic data in relation to the interpretive
model parameters; and 2) the Hessian matrix, which
approximates the second derivatives with products of first
derivatives. Besides the large memory requirements
to store these matrices during the inversion, calculating
sensitivities is usually the most demanding task in Gauss-
Newton inversion in terms of computer time.

Memory use and processing time are limiting factors
in large problems, particularly in 3D applications. The
Limited-Memory BFGS Quasi-Newton method was devised
to reduce the memory requirements in the inversion
process. This method uses an approximation to the
inverse of the hessian matrix calculated directly from the
gradient of the objective function in each iteration, and
operates to generate a new estimate of the parameter
vector without storing the complete hessian, nor its inverse.
The gradient is calculated in each iteration by using a
column of sensitivities at a time, which precludes the
storage of the complete jacobian in memory.

The LM-BFGS method has been used for many large
scale problems. In geophysical electromagnetic inverse
problems, the quasi-Newton methods are gaining wide
acceptance since the beginning of the 21st century, as

exemplified by the works of Newman and Boggs (2004),
Haber (2005), Avdeeva and Avdeev (2006), and Avdeev
and Avdeeva (2009).

To assess the gain in memory usage achieved with
the Quasi-Newton BFGS Limited Memory method in
the inversion of geophysical electromagnetic problems,
this paper presents an analysis of an application to
the inversion of magnetotelluric data from layered earth
models. This simple case allows an easy estimation of
the operation counts for the iterations in both the traditional
Gauss-Newton method and the Limited Memory approach.

The example presented here shows the early results of an
ongoing work which will culminate in the application to 3D
problems.

The true importance of the Limited Memory method is in its
application for very large problems, which easily reach the
memory limits of ordinary workstations. However, this first
application to 1D problems generates insights that will be
useful in the later work with more realistic and demanding
situations.

Method

The inverse problem is defined as the fitting of a set
of synthetic data (y) to a set of observations (yo), by
the determination of a set of parameters that define
an interpretive model. The mathematical model of the
synthetic data is expressed by the functional relation
between the parameter vector p and the synthetic
observation vector y:

y = f(x,ω,p), (1)

with the vector x representing coordinates of the
measurement stations and ω, the angular frequencies
used in the survey.

The L2 norm fitting function φ(p) is defined as

φ(p) = ||yo− f||2 = (yo− f)T (yo− f) . (2)

The problem is to find a parameter vector p∗ that minimizes
the function φ , i.e., a p for which the gradient of φ is zero.

Gauss-Newton

For a problem with n observations and m parameters, the
sensitivity matrix A is defined as

An×m =
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(3)
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The Gauss-Newton method approximates the hessian
matrix H of the second derivatives of the functional as the
product of the first derivatives:

H = ATA. (4)

To achieve a stable solution, it is necessary to impose
a priori constraints to the solution. The most common
practice is to use smoothing constraints that impose
proximity between adjacent parameters by enforcing the
following equality in the least squares sense:

p2− p1
p3− p2
p4− p3

...
pn− pn−1

= 0, (5)



−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
0 0 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1





p1
p2
p3
...

pn−1
pn


= Mp = 0.

(6)

The most widely used approach to control the convergence
of the inversion is the Marquardt-Levenberg method, which
adds to the diagonal of the hessian matrix a variable (λ )
that changes at each iteration to make the parameter
estimation close to either a small step in the direction
opposed to the gradient or to the Gauss-Newton step.

Including constraints with a relative weight given by the
variable µ and using the Marquardt-Levenberg method, at
the kth iteration, the estimation of the parameter vector is

pk+1 = pk +
[
ATA+µMT M+λ I

]−1

[
AT
(

y0− f
)
−µMT Mp

]
, (7)

Quasi-Newton BFGS

In the Quasi-Newton BFGS method, the inverse of the
hessian matrix for the (k+1)th iteration is approximated by

H−1
k+1 = (I−ρkskyT

k )H
−1
k (I−ρkyksT

k )+ρksksT
k , (8)

with

ρk =
1

yT
k sk

, (9)

sk = pk−pk−1, (10)

yk = ∇φk−∇φk−1. (11)

The parameter estimation is

pk+1 = pk−αk+1H−1
∇pφ(p j), (12)

where the value for the step size α is chosen to satisfy the
Wolfe conditions Nocedal and Wright (1999):

φ(pk+1)≤ φ(pk)+ c1αk∇φ
T
k δpk, (13)

|∇φ
T
k+1δpk| ≤ c2|∇φ

T
k δpk|, (14)

with 0 < c1 < c2 < 1.

Given an estimation of H−1
k at the kth iteration, the method

yields the next estimation without the need to actually
calculate the inverse of a matrix, and the parameter vector
step is calculated with a single matrix-vector product.

The whole process depends on the determination of an
initial estimation for the hessian. Nocedal and Wright
(1999) present the approximation

H−1
0 = β ||∇pφ(p0)||−1I, (15)

where β is an arbitrary scalar.

Limited Memory Quasi-Newton BFGS

A step beyond the estimation of the inverse of the
hessian given by equation (8) was developed by Broyden,
Fletcher, Goldfarb, and Shanno to produce an estimate
of the product of the inverse hessian by the gradient
by a recursive process that avoids the storing of the
full hessian inverse in memory. This product is then
used in the parameter estimation expressed in equation
(12). The method known as BFGS stores the vectors
sk = pk−pk−1 and yk = ∇φk−∇φk−1 generated in several
iterations and uses them to generate a new (k + 1)
estimation for αk+1H−1

∇pφ(p j) to update the parameter
vector in equation (12). There is, then, a significant
reduction in the memory requirement to perform the
inversion.

Application to the inversion of magnetotelluric data

The first results in this study are from the inversion of MT
data from layered earth models. This problem presents
little demand for memory and takes very little time, even
in the traditional Gauss-Newton approach. However, it
provides a preliminary a simple case that allows the fast
development of the inversion code to be adapted to higher
dimension problems in later phases of the study. It also
allows a comparison in terms of the operation counts in
both methods.

The model to generate the synthetic data is composed of
four layers with the following resistivities and thicknesses:
ρ1 = 500Ωm h1 = 3000 m
ρ2 = 60Ωm h2 = 1000 m
ρ3 = 700Ωm h3 = 2000 m
ρ4 = 50Ωm.

The data are apparent resistivities from a sounding using
61 frequencies in the range from 10−4 to 103 Hz.

The interpretive model is composed of 50 layers with fixed
thicknesses, starting at 50 m and increasing at a 5% rate,
limited at a depth of 10 km.

The same data was inverted using Gauss-Newton and the
LM-BFGS method. The same stable solution was achieved
using the same stopping criterium by both methods. The
Gauss-Newton inversion run for 23 iterations, whereas the
LM-BFGS program took 88 iterations to reach the same
solution, as illustrated in figure 1. The resulting smooth
models from both methods are virtually identical, as shown
in figure 2.
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In the comparison between the two methods, LM-BFGS
has the advantage in two key aspects aspects for this
example:

• The LM-BFGS method stored vectors s and y from 5
iterations. This means that a total of 500 real numbers
were stored in memory simultaneously. In the Gauss-
Newton inversion, on the other hand, the hessian
matrix alone is 50× 50, and the sensitivity matrix is
61× 50, which means a total of 5550 elements in
memory at the same time, more than 10 times the
demand of the LM-BFGS method.

• The number of operations performed in an iteration
of the LM-BFGS method is much smaller than that of
the Gauss-Newton method because the former does
not need to solve a large system of linear equations,
requiring only vector multiplications for which the
operation count is relatively small. The difference is
enough to overcome the greater number of iterations
of the LM-BFGS program.

Final Remarks

The example shown here illustrates the gain in memory
usage for performing inversion with the Limited-Memory
BFGS Quasi-Newton method in comparison with the
Gauss-Newton method. The conclusion drawn for the
1D MT case is an indication that the LM-FFGS method
has the potential to significantly improve the inversion of
electromagnetic data in 2D and 3D cases.
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Figure 1: Convergence of the difference |φk(p j)−φk−1(p j)| in both inversion methods
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Figure 2: Inversion results and data fitting achieved by both methods.
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