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Abstract

With the goal to improve the signal/noise ratio
and obtain great information to the reservoir
characterization, the decomposition called Singular
Spectrum Analysis (SSA) and the other one named
as Frequency-timing has shown to be very useful
to create images with high quality resolution. To
decompose into singular values, it works with
a single trace named by Porsani et al. (2017) as
filtering with iteractive resource Singular Spectrum
Analysis (RI-SSA), which allows to obtain a timing
correlation of the events, producing images without
the unwelcome noising. Afterwards, the chosen
method to decompose was the frequency-timing
suggested by Zoukaneri and Porsani (2015) who called
it Wigner-Ville Maximum Entropy Method (ME-MAM),
which involves the maximum entrophy concept from
Burg to get a high resolution power spectrum.

Introduction

Coherent noise attenuation is an important issue in seismic
data processing. Several filtering methods has been
developed over the years and most of them use a
multichannel approach, often leading to poor results due
to spatial aliasing. To overcome this, we used the so-called
Iteractive Recursive Singular Spectrum Analysis (RI-SSA)
introduced by Porsani et al. (2017) to decompose each
trace in a shot gather using only the time correlation of the
events within it (Silva, 2015). The RI-SSA method was able
to separate the signal components more consistently when
compared to the well-known Singular Spectrum Analysis
(SSA), since the latter mixes the high and low frequency
components (Harris and Yuan, 2010).

To generate the seismic attributes (Taner et al., 1994) on
the RI-SSA filtered stacked section we use the maximum
entropy method (Burg, 1967) to estimate a high resolution
spectrum, avoiding the crossed terms. This method,
called the Maximum Entropy of Wigner-Ville method (MEM-
WV) by Zoukaneri and Porsani (2015), is based on the
estimation of a linear prediction operator and on the
estimation and extension of the autocorrelation function.
After calculating the autocorrelation coefficients, one can
generate the Kernel terms of the Wigner-Ville Maximum
Entropy, which generate the maximum entropy spectrum
when applied to the Fourier transform.

Theory

Singular Spectrum Analysis (SSA)

In SSA, we first create a Toeplitz matrix D using the
operator J{.}, which is applied to the each trace d =

[d(1), ...,d(M)]T, as in eq. 1. D is often called the trajectory
matrix (Harris and Yuan, 2010).

J{d}= D =



d(1) 0 · · · 0N
... d(1)

. . .
...

d(M)
...

. . . 0

0 d(M)
... d(1)

...
...

. . .
0M+N−1 0 · · · d(M)


(1)

Then we calculate the singular value decomposition of D,
given by

D = UΣVT =
N

∑
i=1

σiuivT
i =

N

∑
i=1

D̃i, (2)

where U = [u1 . . . uN] is a (M+N−1)× (M+N−1) matrix
containing the left singular vectors, V = [v1 . . . vN] is a
N × N matrix with the right singular vectors and Σ =
diag(σ1 σ2 . . . σN) is a matrix of the singular values, where
σ1 ≥ σ2 ≥ ·· · ≥ σN ≥ 0 (Golub and Van Loan, 2012). The
matrix D could be seen as a sum of unitary matrices
(uivT

i ) weighted by the respective singular values, named
as eigenimages (Freire, 1986).

The seismic trace can be reconstructed applying the
inverse operator J−1 {.} in D̃. This inverse operator (eq. 3)
includes the displacement adjustement and trace average.

d =
N

∑
i=1

d̃i =
N

∑
i=1

J−1
{

D̃i

}
(3)

In order to validate the decomposition, a synthetic trace
(Tary et al., 2014) with five components was used. It
consists of two harmonic signals of 15 Hz and 35 Hz (s1
and s2), a harmonic signal modulated by frequency around
65 Hz (s3), a sweep between 15 Hz and 158 Hz (s4), and
a Morlet wavelet with center frequency 113 Hz (s5). The
related equations can be seen in Figure 1. Note that the
trace is the sum of the five components.

Using the algorithm 1, it was possible to decompose
the synthetic signal into 15 components (Figure 2), and
combine them to generate similar components Figure 3,
in order to restore the components that generated the
synthetic trace (Figure 1).
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s1(t) = 0.8 cos(30πt)

s2(t) = 0.6 cos(70πt)

s3(t) = 0.7 cos(130πt + 5 sin(2πt))

s4 = sin
(

8π100t/8

log(100)

)

s5 = 3e−1250(t−2)2 cos(710(t − 2))

Synthetic data =
∑5

j=1 sj(t)

Figure 1: The five components s1(t), s2(t), s3(t), s4(t), s5(t)
and the resulting synthetic signal.

Algorithm 1: SSA
Generate the matrix of the displaced data, with the J, D
operator
Calculate the first eigenvalues and eigenvectors
Calculate the first eigenimage
Generate the filtered trace using the J inverse operator

Recursivo Iterativo Singular Spectrum Analysis (RI-SSA)

Figure 11 shows the result of the SSA; note that it is not
possible to properly separate the high and low energies
using this technique, leaving a considerable part of the
ground roll behind. Thus, to overcome this limitation,
Porsani et al. (2018) added to the SSA method the
recursion and iteration to properly decode and separate a
signal into high and low energy components using three
loops. In the internal loop, the high energy component of
the signal is calculated by recursion in the number of rows
in the trajectory matrix, using only the first eigenvalues
and eigenvectors, which correspond to the highest energy
component. The result is subtracted from the input signal in
the second loop and the process is repeated. This provides
an estimate of the low-energy part of the signal. In the
external loop, this low energy signal is subtracted from the
input signal and the result is output as a signal component.
The entire procedure is then repeated with the low energy
component as the new input signal. The procedure starts
with the search for input data and is repeated until the
K signal components have been estimated. Algorithm 2
illustrates this procedute:
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Figure 2: Decomposition of the synthetic signal (Figure 1)
using the SSA algorithm
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Figure 3: Sum of similar components of Figure 2

Figure 4 shows the result of the synthetic trace
decomposition (Figure 1) using the RI-SSA algorithm; note
that it was possible to accurately separate the low and high
frequency components, which means this method is better
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Algorithm 2: RI-SSA

d̂0 = d
DO k = 1,...,K (Loop components)

N = max{1,K− k+1}
d̂0

0 = dk
DO j = 1,..., J (Iterative loop)

d̃0
0 = d̂0

j−1
DO τ = 1, ...,N (Recursive loop)
• Creats Matrix Dτ from d̃0

τ−1
• Calculates uτ ,vτ ,στ

• Computes and updates d̃0
τ−1

END DO
d̂ j = d̂ j−1− d̃0

N (Update d̂ j )
END DO
Output x̂k = dk− d̂ j Components

dk+1− d̂ j
END DO

The signal decomposition is: d = ∑
K
k=1 xk + d̂ j

than the SSA 2.
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Figure 4: Synthetic signal decomposition using RI-SSA
algorithm with j = 200 iterations, K = 15 components e N
= K - k + 1 recursions

In order to find the s1, ...,s5 components, Figure 1, Figure
5 presents the sum of similar components, from low to
high frequency. It can be seen that the separation of
the components with this method was better than that
shown in Figure 2. Note that the sum of the components
using the RI-SSA method Figure 5 is closer to the original
components than the result obtained by means of SSA
Figure 3.
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Figure 5: Signal components estimation with the sum of
similar components

Time-frequency Decomposition

Signal analysis in the spectral domain is common in
seismic processing. Using the Fourier transform (FT),
a time series s(t) passes to the frequency domain S( f ).
The classical spectral representations are defined for
stationary data and linear systems, these being the main
characteristics of the limitations of such method. Over time,
new methods have been developed aiming to overcome
such limitations. Hence, the Fourier transform cannot be
properly applied to signals whose frequency content varies
significantly with time; FT is not suitable for non-stationary
signals.

In the temporal representation s(t), it is possible to
know how the amplitude of the signal varies with time,
casually providing information related to the frequency
content of the signal. Considering the frequency domain
representation S( f ), known as spectral analysis, it is
possible to analyze different frequency components of the
signal, as well as information related to the magnitude of
each component.

In obtaining the joint information, it is necessary to
directly represent the frequency content with the temporal
characteristics. With this strategy, the 1 − D signal is
converted into a 2−D spectrum, where its dimensions are
time and frequency, which means that, in this new domain,
the complete spectrum shows the frequency content for
each time.
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Short-Time Fourier Transform

In the short-time Fourier transform (STFT), it is assumed
that the frequency varies a little in small time windows, the
main problem being the temporal location. At finite time
intervals the signal is approximately stationary. Normally
the signal is divided into traces and the Fourier transform is
calculated for each trace. Formally, by sliding the window
w(t− τ) (equation 4), centered in instant tn, through every
seismic trace and applying the Fourier transform, it is
possible to obtain the spectral variation with time. The
mathematical expression for STFT is given by:

STFT(τ, f ) =
∫ +∞

−∞

s(t)w(t− τ)e−2iπ f tdt (4)

where s(t) is the synthetic singal, w(t− τ) is the window, τ

is the window center time, and e−2iπ f t is the Fourier kernel.

When you want to get a higher temporal resolution, the
window w has to be the smallest possible. On the
other hand, large window will generate the opposite effect
because it acts as a fine filter in the frequency domain,
implying fine frequency sampling.

Figure 6 represents the original components
decomposition using STFT, and Figure 7, after RI-SSA.
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Figure 6: Time-frequency of the components (Figure 1)
using STFT
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Figure 7: Time-frequency after RI-SSA (Figure 5) using
STFT

Wigner-Ville distribution of an analytic signal

Para um sinal z(t) amostrado uniformemente com intervalo
∆ t, a distribuição de Wigner-Ville discreta é dada por
Boashash (1992):

For a uniformly sampled signal z(t) with interval ∆ t, the

discrete Wigner-Ville distribution is given by Boashash
(1992):

W (t, f ) = 2
N−1

∑
k=0

z(t− k)z∗(t + k)e(−2 jπ f k) (5)

where the analytic signal z(n) and its conjugate z∗(n)
corresponding to x(n) given by:

z(n) = x(n)+ jH [x(n)] (6)

where H [x(n)] represents the Hilbert transform of the signal
x(n),n = 0, ...,Ns−1, and Ns, the number of observations.

Maximum Entropy Method

Usually the power spectrum is estimated using the short-
window Fourier transform (ST FT ) of the coefficients of
the autocorrelation function (FAC). However, the leakage
effect ”leakage”, when the data is truncated, limits the
Fourier transform. To obtain good resolution from a limited
data series, (Burg, 1967) formulated the Maximum Entropy
Method, constituting of a linear predictive filter, which gives
the least quadratic error between the data and its predicted
values. The basic form of the maximum entropy method is
given by equation 7:

P( f ) =
ENc ∆t∣∣∣∑Nc−1

n=0 cne− j2π f n∆t
∣∣∣2 , (7)

where P( f ) is the power spectrum, cn, n = 0, ...,Nc −
1, (c0 = 1) represent the prediction error operator
(PEO) coefficients, also known as reflection coefficient
and/or autoregressive parameter of order Nc, Ec is the
corresponding error energy, and f is limited by the Nyquist
interval −1/(2∆t)6 f 6 1/(2∆t).

The power spectrum P(t) is completely defined if the cn
coefficients and the ENc energy are known. The PEO was
estimated by the (Burg, 1967) algorithm directly from the
analytic signal z(n)
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Figure 8: Time-frequency decomposition using WV-MEM

Real data examples

Application of the SSA Algorithm in the Real Data

As is known, by using SSA algorithm, it is possible from a
seismic trace to find the corresponding eigenimages and/or
eigentraces. Furthermore, it is known that each eigentrace
corresponds to a certain frequency content. This technique
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Figure 9: Decomposition using WV-MEM after RI-SSA

can be used to delete certain uninteresting parts of the
data.

Figure 10(a) corresponds to a seismogram of the
Recôncavo basin 3D seismic data (line Riacho São Pedro
Jacuı́pe), Figure 10(b) represents the low frequency of the
data, and Figure 10(c) represents the final result; note that
the ground roll is still strongly present. Figure 11 represents
the frequency spectrum of the real data, the low frequency
containing the ground roll and the high frequency filtered
data.
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Figure 10: Seismograms of the real data in (a), low
frequencies in (b), and final result in (c)
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Figure 11: Data spectrum after SSA filtering

Filtering ground roll using RI-SSA algorithm

Note that the RI-SSA (Figure 4) was able to adequately
separate the frequency components, and, applied to land
data 12, this algorithm is capable of accurately filtering
ground roll, increasing the signal-to-noise ratio.

From the frequency spectrum, Figure 13, it can be seen
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Figure 12: Seismograms of the real data in (a), low
frequencies in (b), and final result in (c)

that the RI-SSA method was able to adequately separate
the high and low frequency components, which can be
used to totally remove the noise from the data.
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Figure 13: Data spectra after the use of RI-SSA

Seismic attributes of real data

Most of the extracted attributes were obtained using
the WV-MEM spectrum in post-stacked data. As a
geomorphological attribute, we have the instantaneous
average frequency presented in Figure 15, extracted from
Figure 14. The vertical resolution of the spectral section
is observed due to the resolution of the WV-MEM method.
Figure 16 refers to the variant attribute and corresponds
to local deviation and frequency with respect to average
frequency. And the instantaneous power as seen in Figure
17.
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Figure 14: Original data
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Figure 15: Average instantaneous frequency using WV-
MEM
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Figure 16: Average instantaneous variance using WV-
MEM
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Figure 17: Instantaneous power

Conclusion

The RI-SSA method was able to decompose the signal
into several intrinsic modes, as seen in Figure 4, with high
separability. Recursions and iterations are essential for the
separability of the components. This approach developed
by Porsani et al. (2018) was used for the attenuation of
ground roll, generating excellent results.

The Wigner-Ville maximum entropy distribution was
obtained using the Burg method to extend the Wigner-
Ville kernel sequences using the prediction error operator,
applying to each extended Kernel sequence the Fourier
transform.

From the WV-MEM spectrum, it was possible to obtain
the seismic attribute instantaneous average frequency
and mean variance attributes with high resolution for the
characterization of reservoirs.
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