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Abstract

Full-waveform inversion (FWI) is a powerful technique with
the ability to provide accurate images of the subsurface,
however, because it is an ill-posed inverse problem it
still faces some difficulties. An FWI approach with
great potential is the Bayesian formulation because it has
features that are able to mitigate the ill-posedness. Namely,
this approach enables the inclusion of a priori knowledge,
regularisation and constraints into the FWI. However, for
reasons of computational cost and difficulties related to
the definition and inclusion of a priori information, this
approach has not been widely applied in the literature.
In this work, in an attempt to overcome some of these
difficulties, it is proposed to vary the prior model and
the corresponding uncertainties throughout the inversion
coupled with the inclusion of a priori knowledge regarding
correlations between the P-velocities (characterised by
fractional Brownian motions). In addition to reducing the
initial difficulties in defining the uncertainties, our proposal
seeks to assist the FWI in overcoming problems at the
beginning of the inversion (e.g. caused by the inaccuracy
of the initial model) giving initially a greater weight to the
a priori information and after that, after these difficulties
surpassed, prioritises the information from the observed
data. We demonstrate how powerful our proposal is
compared to the traditional ones in an adverse situation,
in which the data are devoid of low frequencies (below 3
Hz) and have a high noise level.

Introduction

Full-waveform inversion (FWI) is a technique that has
been recognised as powerful because its potential to
provide more accurate and more detailed images of the
subsurface than traditional seismic imaging techniques.
Originally proposed by Lailly (1983) and Tarantola (1984),
this technique comprises an optimisation problem in which
one aims to find the subsurface physical properties that
lead to the best fit between modelled and recorded
seismograms. Because FWI involves the modelling of
the wavefields from the full-wave equation and aims to
achieve modelled seismograms as similar as possible
to the recorded seismograms, it has a particular ability
to explore almost all the information contained in the

observed seismograms and consequently to obtain more
accurate images of the subsurface. However, because
it is an ill-posed inverse problem, nonlinear and with a
large number of variables, FWI still faces several obstacles.
Although many approaches and strategies have been
proposed in the literature to overcome these obstacles
(e.g., objective functions different from the traditional the
l2-norm of residuals, hierarchical multiscale strategies and
regularization techniques) some obstacles continue to
persist (Virieux and Operto, 2009; Tejero et al., 2015; Li
and Demanet, 2016; Virieux et al., 2017).

One approach with great potential is, for instance,
the Bayesian formulation of the FWI (Tarantola, 1987;
Mosegaard and Tarantola, 2002). This approach has
several features that are crucial in mitigating the ill-
posedness. Namely, this approach enables the inclusion
of a priori knowledge, regularisation and constraints.
Particularly noteworthy are the addition of a priori
information and regularisation which have been referred in
the literature as particularly important in mitigating some
problems such as cycle-skipping, and problems caused
by high noise levels in the observed data. However,
because it is impracticable to apply this approach genuinely
in FWI due to its high computational cost and because
difficulties in defining and incorporating a priori knowledge,
this approach has not been widely used in the literature
(Bui-Thanh et al., 2013; Virieux et al., 2017).

In a previous work, (Carvalho et al., 2018), we have
found that is exceptionally beneficial to incorporate
in the FWI information regarding existing statistical
correlations between the P-velocities characterised by
fractional Brownian motions (fBm) (Sahimi and Tajer,
2005) in FWI, however, the initial definition of appropriate
uncertainties has prevailed a problem. In order to
overcome this difficulty, we propose in this work to vary the
uncertainties concerning to the model during the inversion
process. We propose to begin the inversion with the
smallest uncertainties and then gradually to increase them
whenever the objective function begins to approaching a
possible local minimum (i.e., when the objective function
begins to take very close values).

In this way, we are considerably reducing the initial
difficulties in defining the model uncertainties (with the
attribution of the lowest uncertainties) and, at the same
time, we are helping the FWI to overcome the initial
difficulties (e.g. caused by the inaccuracy of the initial
model) with greater importance (weight) given to the a
priori information at the beginning of the inversion. And
after these difficulties have been overcome, in line with
the Asnaashari et al. (2013) strategy, priority is given to
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information from the observed data (with the reduction of
the weight of a priori information).

Methodology

FWI is a technique formulated as an optimisation problem,
in which the aim is to find the subsurface physical
properties (e.g., P-velocities in the acoustic approximation)
that minimise the differences between modelled and
observed data (Lailly, 1983; Tarantola, 1984). In
the Bayesian formulation one aims to minimise the
following objective function (Tarantola, 1987; Mosegaard
and Tarantola, 2002):

S(m) =
1
2

ns

∑
s=1

nr

∑
r=1

(dr,s(m)−dobs
r,s )ᵀC−1

D (dr,s(m)−dobs
r,s )

+
1
2
(m−mprior)

ᵀC−1
M (m−mprior) (1)

where dr,s(m) and dobs
r,s are the modelled data (obtained from

the model m) and the observed seismic data, respectively
(recorded at receiver r generated by the source s), CD and
CM are the covariance matrices corresponding to the data
and the model respectively, mprior is the model with a priori
information about the model parameters and ns and nr are
the number of sources and of receivers, respectively.

Note that the most commonly applied objective function in
the literature (l2-norm of the differences between modelled
and observed data) comprises considering only the first
term and assuming the covariance matrix CD equal to the
identity.

Contrary to what is commonly considered in literature, in
this work we propose to vary the uncertainties regarding
to the model and the a priori model throughout the
optimisation process and, in addition, to incorporate a priori
knowledge that in previous works we have found to be
valuable information in FWI, more specifically knowledge
regarding existing statistical correlations between the P-
velocities in depth (in the vertical direction) characterised
by fBm (Sahimi and Tajer, 2005; Carvalho et al., 2018).

Our proposal is to start the inversion with small
uncertainties and gradually to increase them in depth
throughout the optimisation process whenever the
objective function tends to converge to possible local
minima. We assume the uncertainties to be linearly
increasing in depth, but remain small and constant at the
surface. We assume that the objective function tends
to converge to a local minimum whenever the objective
function decreases very little in several consecutive
iterations.

Through our proposal, at the beginning of the inversion,
the P-velocities are forced not to depart too far from the
most probable ones (i.e., from the a priori model) (with the
assignment of small uncertainties) and, at the same time, a
greater importance is given to the a priori information (given
that smaller uncertainties correspond to higher weights for
the term of the objective function corresponding to the a
priori information: second term of the objective function
(1)). In addition, whenever the objective function tends to
approach a possible local minimum, we propose to replace
the a priori model with the last iteration model and increase
the uncertainties. In this way, it contributes to helping the
FWI to overcome the initial problems it usually faces, such

as cycle-skipping situations caused by the inaccuracy of
the initial model. And, once these initial problems have
been overcome, a greater importance (weight) is given to
the information from the observed data by reducing the
weight of the a priori information and simultaneously giving
greater freedom to the P-velocities to take quantities further
away from the a priori model.

Furthermore, we include the a priori knowledge that the
P-velocities follow fBm in depth (in the vertical direction).
This a priori knowledge is included through the covariance
matrix corresponding to the model (CM) based on the
following covariance function (2), which represents the
covariance between the P-velocities at t and s depths in a
given vertical P-velocity profile, and based on the P-velocity
uncertainties assumed in the usual Bayesian formulation
context (Carvalho et al., 2018):

Cov(BH
t BH

s ) =
1
2

(
σ

2
t +σ

2
s −

∣∣∣(σ2
t )

1/2H − (σ2
s )

1/2H
∣∣∣2H

)
(2)

where BH is a continuous Gaussian process which starts at
zero and with expectation zero at all positions (which in our
case corresponds to a vertical P-velocity profile subtracted
from the P-velocity at the surface - initial point), H ∈ (0,1) is
an index - the Hurst index - that characterises the fBm and,
σ2

t and σ2
s are the a priori variances of the P-velocities at t

and s depths respectively, assumed in the usual Bayesian
formulation context.

fBm is a generalisation of a Wiener process or Brownian
motion but with increments that may not be independent
(Mandelbrot and van Ness, 1968). A fBm is characterised
by a parameter, the Hurst index or Hurst exponent H ∈
(0,1), which describes the degree of correlation between
increments and it is governed by the following covariance
function:

Cov(BH
t BH

s ) =
1
2

(
t2H + s2H −|t− s|2H

)
(3)

where, as previously, BH represents a continuous
Gaussian process which starts at zero and with expectation
zero at all positions, H ∈ (0,1) is the Hurst index of the fBm
and t and s are the positions (depth).

When the Hurst index is H < 1/2 the increments of the
process are negatively correlated whereas when the Hurst
index is H > 1/2 the increments are positively correlated.
On the other hand, when H = 1/2 the process is a standard
Wiener process or Brownian motion.

Thus, if one assumes that at t and s depths the a priori
uncertainties (variances) associated with the prior model
are σ2

t and σ2
s , respectively, and assuming that the P-

velocities follow a fBm in depth, it can be said that:
Cov(BH

t BH
t ) = t2H = σ2

t and Cov(BH
s BH

s ) = s2H = σ2
s . And,

therefore, substituting these relationships in equation (3)
it can be deduced that the P-velocities at depths t and
s are correlated according to the covariance function (2).
In agreement with the results found by Sahimi and Tajer
(2005) we assume that the subsurface follows a fBm with a
Hurst index of about H = 0.35.

Numerical examples

In order to demonstrate the potential of our proposal,
we present the results of the inversion of a part of the
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Figure 1 – True P-velocity model (left) and initial P-velocity model (with linearly increasing P-velocities in depth, with 1600 m/s
at 60 m and 2200 m/s at 1500 m depth) (right).

Marmousi2 model (Martin et al., 2006) obtained by our
methodology and the traditional objective functions.

The true P-velocity model (Figure 1, left) corresponds to
a region of 3 km of extension and 1.5 km depth and it
comprises one of the geologically more complex parts of
Marmousi2 consisting mainly of some geological faults.
The acquisition geometry consists of 15 sources fired at
every 200 m (between the distances of 100 m and 2900
m) at 20 m depth and a total of 144 receivers distributed
along the surface 20 m apart (between the distances of
40 m and 2960 m) at 10 m depth. The acquisition time
was 3.0 seconds. The sources are assumed to be Ricker
wavelets with 10 Hz peak frequency and, for the purpose of
simulating a situation close to the real a high-pass filter was
applied to remove the frequency components below 3 Hz.
The observed seismograms were generated synthetically
from the true model and a Gaussian noise was added,
resulting observed seismograms with a median signal-to-
noise ratio (SNR) of around 12 dB.

A spatial regular discretization of 10 m was considered.
The finite-difference method in the time-domain with fourth-
order and second-order accuracy in space and time,
respectively, is applied to model the wavefields. In order
to simulate an infinite models beyond the edges, the
unsplit convolutional perfectly matched layers (C-PML)
(Komatitsch and Martin, 2007; Pasalic and McGarry, 2010)
absorbing boundary condition is used on all model edges.

In the application of the FWI Bayesian formulation it was
assumed that the P-velocities individually follow a normal
probability distribution with a mean equal to the prior model
and the uncertainties are assumed to be linearly increasing
in depth, with a constant standard deviation at the surface
of 200 m/s (for a confidence level of 99.7%). The gradual
increase in the uncertainties is achieved by increasing
standard deviation increments of 100/3 m/s at maximum
depth up to a maximum of 2000/3 m/s, whenever the
objective function tends to converge to local minima. In
this work, we assume that the objective function tends to
converge to a local minimum whenever in 30 consecutive
iterations the objective function decreases less than 0.1%.

Starting from P-velocity model of the Figure 1 (right)
as initial model (also assumed as prior model) the P-

velocity models presented in Figure 2 were obtained,
when the traditional objective function (l2 -norm of the
residuals) (Figure 2A), the traditional Bayesian formulation
(Figure 2B), Traditional Bayesian formulation with our
proposal (Figure 2C), Bayesian formulation with a priori
knowledge regarding statistical correlations between the P-
velocities (Figure 2D) and Bayesian formulation with a priori
knowledge regarding statistical correlations between the P-
velocities and with our proposal (Figure 2E) were applied.

As can be seen, the superiority of our proposal over
traditional objective functions is clear. With our proposal
it was possible to achieve a much more accurate image of
the subsurface (Figure 2E), particularly when compared to
the P-velocity models provided by the traditional objective
functions: l2-norm of the residuals (Figure 2A) and
traditional Bayesian formulation (Figure 2B), which were
unable to provide practically any relevant information about
the subsurface beyond 600 m depth. On the contrary, from
our proposal, it was possible to identify a large part of the
geological structures up to a greater depth (Figure 2E).

It is noteworthy that despite the inclusion of the information
regarding statistical correlations between the P-velocities
in the traditional Bayesian formulation made it possible
to obtain a significantly more accurate image of the
subsurface (Figure 2D) only together with our proposal it
was possible to achieve a sharper image of the subsurface,
particularly at a greater depth (Figure 2E).

Note also that while our proposal when applied only
with the traditional Bayesian formulation doesn’t lead to
significantly better results than the traditional Bayesian
formulation (comparing Figure 2C with Figure 2B), our
proposal becomes particularly powerful when information
about the correlations between the P-velocities is included
(Figure 2E).

Conclusions

We have found that our proposal of assigning variable
model uncertainties throughout the inversion process in the
Bayesian formulation of the FWI coupled with information
regarding statistical correlations between the P-velocities
characterised by fBm is a powerful strategy, enabling to
achieve quite more accurate images of the subsurface.
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Figure 2 – P-velocity models obtained from the traditional objective function (l2-norm of the residuals) (A), traditional Bayesian
formulation (B), Traditional Bayesian formulation with our proposal (C), Bayesian formulation with a priori knowledge regarding
statistical correlations between the P-velocities (D) and Bayesian formulation with a priori knowledge regarding statistical
correlations between the P-velocities and with our proposal (E) and corresponding differences (in absolute value) with the
true model (in the right column).

Sixteenth International Congress of the Brazilian Geophysical Society
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