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Abstract

Since the end of the 1990s, the methods of imaging and
inversion seismic have been given systematic attention,
through multiparametric traveltimes, such as the Common-
Reflection-Surface (CRS) method, in its two versions
zero offset (ZO) and finite offset (FO). Despite its
superior quality to traditional methods, CRS faces the
challenges of additional computation costs, which stem
the required multiparameter estimations. Because of their
usefulness for many processing and imaging purposes, the
problem of estimation of the slope, curvature, and velocity
parameters (commonly called CRS parameters) reliably
and efficiently has drawn attention in the seismic literature.
Mathematically, approaches to solve that problem rely on
global optimization techniques. The main challenges are
robustness (small relative sensitivity to given initial values)
and convergence speed. The Differential Evolution (DE)
has shown promising results. That method has a welcome
property of robustness, however also the drawback of
undesired convergence speed. In this paper, we propose
to overcome this problem upon the application of the
Adaptive Differential Evolution known as JADE. Qualitative
results from synthetic and real datasets show the fast
convergence of JADE when compared to that of DE, with
similar execution time. Therefore, JADE presents itself as
a great alternative to DE, showing even more promising
results regarding the estimation of the ZO-CRS and FO-
CRS parameters.

Introduction

In seismic data processing, reliable and accurate traveltime
approximations to reflection and diffraction events play an
important role as stacking operators to generate initial
sections or volumes from the given data. In general, a finite
number of parameters define such traveltime operators.
For each given data sample, a corresponding set of
parameters is to be estimated by coherency (semblance)
analysis directly applied to the given dataset. More
specifically, assuming a given data sample, for each given
candidate set of parameters, the corresponding operator is
constructed, and the data is stacked along that traveltime.
The energy of the stack (semblance value) is computed.
We refrain here to provide the mathematical expression of
the semblance, which is well known in seismic processing.

For a more detailed explanation of the semblance quantity,
the reader is referred to, e.g., Neidell and Taner (1971).
The semblance plays the role of the objective function. The
set of parameters that maximizes the sample is the desired
parameter set.

In this paper, two traveltime operators are selected, upon
which parameter-estimation experiments are analyzed.
These are the hyperbolic ZO-CRS and FO-CRS, namely
zero-offset (ZO) and finite-offset (FO) common-reflection-
surface (CRS) traveltimes, respectively. The ZO-CRS
and FO-CRS are employed for parameter estimations on
a given 2D dataset. We also refrain to provide the
mathematical expressions of the ZO-CRS and FO-CRS
operators, referring the reader to the publications Jäger
et al. (2001) and Zhang et al. (2001), respectively. For
each data sample in the post-stack domain, the ZO-CRS
traveltime depends on three parameters, namely one slope
and two curvatures (see, e.g., Jäger et al., 2001). For
each data sample in the prestack domain, the FO-CRS
traveltime depends on five parameters, namely two slopes
and three curvatures (see, e.g., Zhang et al., 2001). Finally,
to correct the stretching due to the moveouts used, we use
a stretch-free method developed by Faccipieri et al. (2018).

Parameter estimation

Concerning the parameter-estimation problem for the 2D
ZO-CRS, which involves three parameters, Jäger et al.
(2001) proposed a scheme that consists of a sequence
of one-parameter searches in suitable sub-domains of
the data, followed by a local, three-parameter search
having the previously-obtained parameters as initial values.
A generalization of that scheme has been proposed in
Garabito et al. (2001), that is based on an auxiliary two-
parameter (diffraction) traveltime operator. At first, the
simulated annealing (SA) method is applied to provide
a simultaneous estimate of these two parameters, upon
which a (partial) stacked section is constructed. Next,
a one-parameter search applied to that partial stacked
section to estimate the third parameter. In the same way as
before, a local three-parameter search is carried out using
the previous estimations as initial values.

From basic mathematical principles, sequential, few-
parameter (cheaper) searches of the parameters in sub-
domains are expected followed by a final, full-parameter
local search are expected to provide less accurate
estimations than the ones provided by simultaneous,
full-parameter, global (much more expensive) searches.
Ernesto Bonomi and Marchetti (2009) applied the global
conjugate direction optimization method (see Powell,
1964) to simultaneously estimate the eight parameters that
define the 3D ZO-CRS operator. Estimations based on
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the global Differential Evolution (DE) method have been
recently reported in Barros et al. (2015) and Walda and
Gajewski (2017).

In this work, we address the parameter-estimation problem
that corresponds to the 2D ZO- and FO-CRS. Our
approach is based on the JADE Adaptive Differential
Evolution (see, e.g. Zhang and Sanderson, 2009),
which combines the good accuracy provided by the DE
algorithm, at the same time avoiding its drawback of slow
convergence. The examples provided below confirm the
expected good results.

Methodology

The methodology employed in our parameter-estimated
problem consists of two global optimization methods (or
meta heuristics) Differential Evolution (DE) and its variant
Adaptive Differential Evolution (JADE).

Differential Evolution (DE):

Differential Evolution (Storn and Price, 1997), or simply DE,
falls into the category of nature-inspired, evolution meta
heuristics (i.e., global optimization algorithmic methods for
which there is no mathematical convergence proof). DE
tries to formulate optimization problems as evolutionary
processes: a population (made up by solution-candidate
individuals) is subjected to an iteration process (with
Ng iterations), upon which it transforms itself (evolves),
according to preassigned rules, to an optimal population
(that consists of the solution individuals). The approach
is divided into two main steps. First, an initial population
(or initial generation) P with Np individuals is created. Each
individual is a D-dimension vector, for which each entry is a
randomly selected number of a given real interval. Second,
an iterative process is applied, such that each iteration
represents a new (evolved) population (or generation).
The evolution that takes place at each iteration follow the
preassigned rules of mutation, crossover and selection
described below:
Mutation: At a given iteration, we use the notation P[ j][i]
for the i-th element of the j-th individual. Three (mutually
different) random indexes r1,r2,r3 ∈ [1,N p], are chosen,
based on a uniform integer distribution. In addition, a scale
factor F ∈ (0,2) is fixed for the whole optimization process.
The mutant element V [ j][i] (i-th entry of the j-th mutant
individual V [ j]) is then given by

V [ j][i] = P[r1][i]+F ∗ (P[r2][i]−P[r3][i])
i ∈ [1,D]
j ∈ [1,N p] , (1)

Crossover: At the given iteration, the crossover operation
involves the elements P[ j][i] and V [ j][i], from the j-
th individual and its corresponding mutant, respectively.
Likewise the mutation, a crossover factor CR ∈ [0,1] is fixed
for the whole process. We now introduce the index irand
extracted from a uniform random integer distribution of
{1, · · · ,D} and f rand a uniform random generator of real
numbers in the real interval [0,1]. The element U [ j][i], of
crossover individual U [ j] is given by

U j[i] =
{

V [ j][i] if ( f rand < CR) or (i == irand)
P[ j][i] otherwise. , (2)

Selection: That consists of the choice between P[ j] and
U [ j], as the one for which the largest value of objective
function f is achieved. In symbols,

P[ j] =
{

U [ j] if f (P[ j]) < f (U [ j]),
P[ j] otherwise. , (3)

Adaptive Differential Evolution (JADE):

Adaptive Differential Evolution (Zhang and Sanderson,
2009), or JADE, can be understood as a DE variant, since
initialization of population P is the same, and generation’s
stages are similar. However, three new changes are
introduced: these are an adaptation of control parameters
F and CR, a new mutation strategy called /de/current −
to− pbest/1 and an optional archive population. Such
modifications appear in the mutation and crossover stages,
in which the F and CR parameters are not anymore fixed,
as previously. Instead, they are generated at each iteration
for each individual j in the population, being accordingly
denoted Fj and CR j, respectively given by

Fj = cauchy((µF ,0.1), and CR j = normal(µCR,0.1). (4)

In the above equation, cauchy(µF ,0.1) means the Cauchy
distribution with scale and location values 0.1 (fixed
here for simplicity) and mean value µF . In the same
way, normal(µCR,0.1) means the normal distribution with
standard deviation 0.1 (also fixed) and mean value µCR.
The two adaptive parameters µF and µCR are initially set
to 0.5 and 0.9, respectively, and then updated at the end of
each generation by:

µF = 0.9 · µF + 0.1 · meanL(SF ), (5)

µCR = 0.9 · µCR + 0.1 · meanA(SCR), (6)

Here, SF and SCR denote the sets composed by the
successful parameters Fj and CR j, respectively, both
associated with the U [ j] individual when the first statement
of equation 3 is applied. Moreover, meanL(SF ) and
meanA(SCR) designate the Lehmer and arithmetic mean
values of the sets SF and SCR, respectively. We recall that
expression of the Lehmer mean reads

meanL =

∑
F ∈ SF

F2

∑
F ∈ SF

F
, (7)

Based on the above modifications, a new mutation strategy
is proposed called /de/current − to− pbest/1: For a given
percentage number p, with 0 ≤ p ≤ 1, the 100p% best
individuals are selected to generate the mutated individual
(vector) V [ j] according to the expression

V [ j] = P[ j]+Fj ∗m(P[ jbest ]−P[ j])+Fj ∗ (P[r1]−P[r2]). (8)

Here, the three indexes jbest ∈ [1,bN p·pe], r1,r2 ∈ [1,N p],
are chosen according to an integer uniform distribution.
The population is then sorted so that the jbest individual,
for which the objective function achieves the maximum
value, occupies the position 1, the remaining ones (until
jbest position) occupying successive positions according
decreasing values of the objective function.
Remark: The population diversity of the algorithm can be
improved upon the introduction of an archive population A,
populated with the j-th individual P[ j], for which failed to
provide an objective function greater than the one achieved
by the individual U [ j], defined by equation 3. With the help
of the archive A, the individual P[r2] in equation 8 is such
that its index r2 now ranges within the interval [1,N p+ |A|]
and moreover, that individual is replaced by P̃[r2], given by

P̃[r2] =

{
P[r2] if r2 ≤ N p,
P[r2−N p] otherwise. (9)

The maximum established size of the archive is set to be
N p and always when this limit is reached an individual is
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randomly removed from its population, using for that an
uniform integer distribution. The implementation of JADE
is described in algorithm 1. In it, it is assumed a vector
notation for the population. Further, mutation, crossover
and boundary verification are collapsed in one block (lines
31-39). Also, the used term irand(a,b) represents an
integer random generator chosen in the interval [a,b] .

Experiments

We consider three 2D seismic datasets DIFRAT, SOL,
and JEQUITI in which the first two are synthetic and the
third a real dataset. Their specifications are displayed
in Table 1. The midpoint and offset distances shown for
JEQUITI dataset are the mean value of all midpoint and
offset distances because it is a real dataset not regular.
Besides, JEQUITI dataset is a marine two-dimensional
(2D) line from the Jequitinhonha basin at the coast of
Bahia, Brazil.

The estimation processes were executed on an Amazon
Web Services Elastic Computing Cloud (AWS EC2)
instance with 72 Xeon Platinum 8124 3GHz vCores and
144GB of RAM, running on Ubuntu 18.04. The ZO-
CRS and FO-CRS code implementations, both for DE and
JADE, were compiled with the gcc compiler in its version
7.3.0, using the -O3 optimization flag. Furthermore,
the programs were implemented following the Scalable
Partially Idempotent Task System (SPITS) programming
model by Borin et al., 2016, then executed using the PY-
PITS run time by Benedicto et al., 2017. Moreover, the
parameter p from line 3 of the algorithm 1 was set to be
0.2.

Results

For the given datasets, the parameter estimations provided
by JADE and DE algorithms are compared and discussed.
The cases of ZO CRS and FO CRS are treated separately.

ZO CRS: Tables 2 and 3 show the average execution
times of JADE and DE for the different datasets. We
can observe that both JADE and DE complete the same
number of iterations in very similar times. However,
from the coherence panels shown in Figures 1 and 2,
it becomes apparent the advantage of JADE over DE in
terms of quality. Consider, for instance, the ZO semblance
section of the DIFRAT dataset (Figure 1). Comparison of
Figures 1c and 1d (refer to generation 21 and population
21 obtained by JADE and DE) shows that JADE has better
quality than DE. On the other hand, the difference between
Figures 1e and 1f (which represent generation 31 and
population 31 obtained by JADE and DE, respectively) is
negligible, the reason is that both heuristics were able to
converge with that many iterations.

Furthermore, take the JEQUITI dataset as an example
(Figure 2). Differently, from the DIFRAT dataset, the
convergence between JADE and DE is not that much
apparent, being both pretty similar. Nonetheless, some
areas of Figure 2a are slightly better than in the same areas
in Figure 2b, as illustrated by the red box in both images.
Besides that, the same comparison applies to the stacked
JEQUITI dataset, shown in Figure 3.

Therefore, JADE performs, in ZO case, in terms of
coherence, equally or better than DE for both synthetic
and real datasets. Further, when taking run time into

Algorithm 1 Pseudo-code for JADE

1: µCR = 0.9; µF = 0.5;
2: pBest = bp×N pe; sizeA = 0;
3:
4: Create an empty population A of size Np
5: Create a random initial population P of size Np
6:
7: // Iterates through all Ng generations
8: for g = 1 to Ng do
9: meanSF = 0.0; meanSF2 = 0.0;

10: meanSCR = 0.0; meanSCR2 = 0.0;
11:
12: // Sorts the pBest first individuals
13: for j = 1 to pBest do
14: for k = j+1 to N p do
15: if f (P[k])> f (P[ j]) then
16: Swap P[k] with P[ j]
17:
18: // Updates each individual
19: for j = 1 to N p do
20: do Fj = min(1.0, cauchy(µF ,0.1));
21: while Fj ≤ 0
22:
23: CR j = min(1.0, max(0.0, normal(µCR,0.1)));
24:
25: uuu = P[ j];
26: xxx1 = P[irand(1,N p)];
27: xxxbest = P[irand(1, pBest)];
28: r2 = irand(1,N p+ sizeA);
29:
30: if r2≤ N p then xxx2 = P[r2];
31: else xxx2 = A[r2−N p];
32:
33: irand = irand(1,D)
34: for i = 1 to D do
35: if i == irand ooorrr f rand(0,1)<CRi then
36: uuu[i] += Fj× (xxxbest [i]−uuu[i]+ xxx1[i]− xxx2[i]);
37:
38: // Verify lower boundary
39: if uuu[i]< low[i] then
40: uuu[i] = (low[i]+P[ j][i])/2;
41:
42: // Verify higher boundary
43: if uuu[i]> high[i] then
44: uuu[i] = (high[i]+P[ j][i])/2;
45:
46: if f (uuu)> f (P[ j]) then
47: P[i] = uuu;
48:
49: meanSF += Fj; meanSF2 += Fj×Fj;
50: meanSCR +=CR j; meanSCR2 += 1.0;
51:
52: if sizeA < N p then
53: sizeA += 1; A[sizeA] = uuu;
54: else
55: A[irand(1,sizeA)] = uuu;
56:
57: if meanSCR2 > 0.0 then
58: µF = 0.9×µF +0.1× (meanSF2 / meanSF);
59: µCR = 0.9×µCR +0.1× (meanSCR / meanCR2);
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Table 1 Dataset specifications

Name Midpoint Distance (m) Offset Distance (m) Number of Traces Number of time samples per trace Sampling interval (ms)

DIFRAT 20 40 2626 376 4

SOL 20 80 4623 700 4

JEQUITI 11.17 90.18 58189 1751 4

consideration, both heuristics are very close to each other.
Hence, there is nothing to justify the use of the latter
method over the former.

Table 2 ZO-CRS execution time: DIFRAT synthetic dataset

Population Number of Execution Time

Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 0.21 0.21 100.01

21 21 0.68 0.66 102.85

31 31 1.46 1.42 102.67
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Figure 1: ZO-CRS semblance comparison between JADE
and DE in DIFRAT dataset, related with table 2

FO CRS: Now, we present and analyze the parameter-
estimation results obtained from both JADE and DE for the
case of FO-CRS. Tables 4 and 5 show the execution times
for the SOL and JEQUITI datasets. Here, due to the longer
running period, the run time results were extracted from a

Table 3 ZO execution time: JEQUITI real dataset

Population Number of Execution Time

Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 2.66 2.67 99.44

21 21 8.67 8.60 100.82

31 31 18.32 18.26 100.29
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Figure 2: ZO-CRS semblance comparison between JADE
and DE in JEQUITI dataset, related with table 3

single execution (and not two as in the ZO tables). Despite
of this, as shown in Table 4, the ratio JADE/DE is still
close to 100%. In other words, the run time performance
difference between the techniques is, as in ZO part, almost
negligible.

Meanwhile, based in Table 5, it is noticeable that
JADE offered faster execution times than DE for lower
iteration counts (i.e., 21 population individuals and 21
generations), while had about the same performance with
higher iterations (i.e., 31 population individuals and 31
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Figure 3: ZO-CRS stack comparison between JADE and
DE in JEQUITI dataset, related with table 3

generations). Nevertheless, despite this last result, still
93.3% of all executions had run times very similar using
both heuristics.

Regarding the qualitative results, Figure 4 shows the
objective function values for the first three offsets in SOL
dataset, while Figure 6 shows these values for the first
three offsets in JEQUITI dataset.

Considering the first image (Figure 4), notice that the
increase in population and generation numbers improve
the objective function values using both DE and JADE
heuristics, but, again, JADE provided a much better
convergence even in a simple synthetic data set, such as
SOL (Figure 4), where a 21×21 JADE is extremely superior
than the 21×21 DE. Here, the time difference is only a few
seconds.

In accordance with the aforementioned, the same pattern
repeats in the second image (Figure 6), where a DE with
21 individuals evolved during 21 generations (Figure 6d)
shows a result much worst than a JADE with 21 individuals
mutated during 21 iterations (Figure 6c). In this case, the
execution time was smaller in JADE, being around 3.8%
faster. This wider gap in results quality is due to the amount
of parameters to be estimated, in which five are searched
using the heuristics against only three in the zero-offset.

Table 4 FO-CRS execution time: SOL synthetic data set

Population Number of Execution Time

Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 4.32 4.27 98.84

21 21 14.26 14.36 100.70

31 31 30.39 30.31 99.73

Table 5 FO-CRS execution time: JEQUITI real dataset

Population Number of Execution Time

Size Generations JADE (m) DE (m) JADE / DE (%)

11 11 305.98 353.26 86.61

21 21 843.59 868.03 97.21

31 31 1739.20 1756.08 99.04
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Figure 4: FO semblance comparison between JADE and
DE in data set Sol, related with table 4
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Figure 5: FO-CRS stack comparison between JADE and
DE in JEQUITI dataset, related with table 5

Conclusions

In this work, two heuristics were implemented to maximize
the semblance objective function when estimating the
parameters for seismic processing algorithms ZO-CRS and
FO-CRS, namely DE and JADE. It is well known that DE
is a robust solution. However, its convergence can take
many iterations, making the final results either unsatisfying
or take too long. On the other hand, JADE could be
used as an alternative, improving convergence time and
quality. The results showed that for the ZO-CRS program
both heuristics were able to converge properly, with better
objective function values by JADE when using a lower
number of population and generations. Nevertheless, in
a more complex program, such as FO-CRS that needs
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Figure 6: FO semblance comparison between JADE and
DE in data set Jequiti, related with table 5

to estimate five parameters, JADE offered considerably
better convergence, even in simple synthetic data sets and
more so in complex real data sets. Furthermore, for the
same number of population individuals and generations,
the program execution time remained about the same.
Finally, it is clear that JADE is an acceptable alternative
to the commonly used DE, given its convergence and time
performance. Also, it would be useful to have a working
version of JADE that takes advantage of accelerators,
i.e., graphics processing units (or GPUs), enabling shorter
execution times while keeping high convergence.
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