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Abstract

In order to optimize free cash flow, today, companies
are reducing the capital expenditure (CAPEX)
by outsourcing their computational processes.
Additionally, cloud computing offers an attractive
possibility of on-demand use of up-to-date virtual-
machine clusters designed by and tailored to the user
needs. In this way, it avoids the problem of acquiring,
maintaining and updating in-house hardware. Cloud-
computing clusters are realized by means of virtual
machines that are allocated on physical servers, which
are located on the cloud provider data centers. Their
specific location may affect network communication
performance and optimal virtual machine allocation
depends on the specifics of the computational task, as
well as the possibilities offered by the cloud provider.
Some cloud providers allow users to choose among
different allocation strategies when instantiating their
set of virtual machines. In this work, we analyze
the impact of different virtual machine allocation
strategies on the performance and cost of executing
a seismic imaging application, namely full waveform
inversion (FWI), on a specific cloud provider, namely
Amazon Web Services (AWS). Our results indicate
that the virtual machine allocation strategy may
significantly affect the performance and the cost of
executing the FWI application on the cloud, which
may cause the execution to be up to 3.1 times more
expensive.

Introduction

Due to the high cost of acquisition and maintenance,
high-performance computing clusters are usually limited
to a few groups. Moreover, such machines suffer from
the depreciation process and with that, it requires new
investments, i.e., increase of the capital expenditure
(CAPEX). Nonetheless, the cloud computing model (Netto
et al., 2018) is allowing anyone to access high-performance
computing systems as a service, paying only for what
they use and with no need to acquire, install and maintain
expensive computing hardware. In this sense, the cloud

computing model has the power to turn high-performance
computing into an accessible and popular service. When
using the cloud, the user may instantiate a set of virtual
machines (VMs) and connect them through a virtual
network to implement its own high-performance computing
cluster. Hence, adapting the system to the user’s software
is a matter of selecting the proper hardware for the virtual
machines and configuring the network for the desired
behavior, which is usually not possible when using in-house
high-performance computing system. Moreover, there is no
need to wait on processing queues, since each user may
have instant access to its own cluster and pay only for what
they use.

Virtual machines instantiated by users are allocated by the
service provider on physical servers that are located on
data centers. VMs that are allocated close to each other,
i.e. on physical servers that are close to each other, usually
have lower communication latency than VMs that are
allocated far apart from each other. Hence, the allocation
strategy affects the VM’s communication performance,
which may also affect the application’s performance,
specially if the performance of the application is highly
dependent on the system communication’s performance.
In order to mitigate this problem, cloud computing providers
are offering services that allow users to indicate the
strategy that should be employed to allocate their virtual
machines on the data centers. Therefore, selecting
the proper strategy may be important to improve the
application’s performance.

Many seismic applications rely on high-performance
computing (HPC) resources to process seismic data. The
full waveform inversion (FWI) method is an example of such
application and, due to its relevance (Peng et al., 2018), it
is a case of interest when analyzing the impact of virtual
machine allocation strategies on the performance of a high-
performance application on the cloud.

In this work, we investigate how different virtual machine
allocation strategies may affect the performance and cost
of executing a seismic imaging application on the Amazon
Web Services (AWS) and we show that the virtual machine
allocation strategy may significantly affect the performance
and the cost of executing the FWI application on the cloud.

FWI problem

Proposed by Tarantola (1984), the full waveform inversion
(FWI) method is designed to invert subsurface elastic
parameters (e.g, acoustic/elastic velocities and density)
from seismic marine or land data acquired at the surface.
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For a dense distribution of sources and receivers, data
acquisition consists of so-called shot records, namely the
reflection response of the subsurface medium due a single
source is recorded by an ensemble of receivers for a
given recording time. Seismic data samples have the form
u(s,r, t), in which u is the recorded amplitude (or trace), s
and r are the source and receiver locations at the surface
and t is the time sample. As such, seismic data occupy a
five-dimensional volume (two coordinates each for source
and receiver position) and one coordinate for time. Hence,
seismic data can be huge, of the order of terabytes.
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Figure 1: Full waveform inversion computing flowchart,
where dobs is the observed data, dmod is the modeled data, g
is the descent direction based on gradient of misfit function
and α is the step length.

FWI follows the pattern of a classical inversion problem
approach: an initial grid model of the subsurface is
assumed with user-selected parameters assigned at a grid
point. Under the use of the same source and receiver
configuration as the original acquisition, shot records are
simulated by solving the wave equation applied to that
model. As a second step, the obtained shot records are
compared with the corresponding observed ones. Using
least squares optimization schemes, the misfits between
the simulated and original shot records are applied to
produce a new model with updated parameters. The
process is the iterated until a pre-assigned stop criterion.
A cartoon of the iterative scheme is provided in Figure 1.
For the purposes of the present paper, the above brief
description of FWI is an adequate choice. For a thorough
and comprehensive explanation of the subject, the reader
is referred to Virieux et al. (2014).

The whole process requires a huge amount of operations
and a high computational power is usually necessary to
enable its execution in a reasonable amount of time. To
address this problem, this technique is often parallelized
and executed on high-performance computing clusters.

For simplicity, but without loss of generality, we consider
a FWI cloud computation applied to the Marmousi model,

a public-domain, high-complexity, and 2D-acquisition
acoustic data set (Versteeg, 1994). For the computation,
we used the TOY2DAC 2D acoustic frequency-domain
full waveform modeling and inversion software (Métivier
et al., 2014). We investigate the impact of different
virtual machine allocation strategies on the performance
of TOY2DAY under the use of the Amazon Web Services
(AWS) cloud.

AWS Cloud

The AWS is a cloud computing provider that have multiple
data centers worldwide. Its data centers are organized in
regions and each region may have one or more availability
zones, which contain the data centers themselves. Each
data center has multiple physical servers (computers).
When instantiating a VM, the user is required to indicate
the desired region. By default, AWS may select any
arbitrary physical server into the data center to allocate this
VM. However, the location of the virtual machines affects
the performance of the communication when instantiating
multiple VMs to create a high-performance cluster. As a
consequence, the performance of the software may also
be affected.

In order to guide the VM allocation process, the user
may: a) indicate a placement group mode, or b) acquire
a dedicated host or instance, as illustrated in Figure 2.
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Figure 2: Virtual Machine allocation strategies.

The placement group mode allows the users to indicate
whether they want their VMs placed as close as possible
to each other (cluster) or in a distributed fashion (spread),
for example. The cluster placement group mode is usually
helpful to reduce the communication latency between VMs
while the spread mode is useful to increase availability,
since VMs are likely to be placed in physical servers
located on different racks or data centers in the same
region.

Microprocessor virtualization technologies allow AWS to
instantiate multiple VMs in the same physical server
without users knowing that they are sharing the same
hardware. This technology allows AWS to improve
utilization of its data centers, however, in some cases it
may affect the performance of VMs (e.g. when one of the
VMs is aggressively consuming the microprocessor data
cache). In order to prevent these problems, users may
acquire specialized services in which the physical server
is fully dedicated to its VMs. AWS allows two modes:
dedicated host and dedicated instance.

The dedicated host mode allocates a physical server that
will be fully dedicated to a single user. Also, in this mode,
the user may select which VMs will be allocated on the
given physical server and may instantiate VMs to the same
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physical server over time. The dedicated instance mode
guarantees that only VMs from the same user will be
allocated on the same physical server. The main difference
from the dedicated host mode is that, with a dedicated host,
the user has visibility and control over how instances are
placed on the server.

Related Work

Binotto et al. (2015) presented a method to support users
in deciding how to distribute computational jobs between
on-premise and cloud resources using an FWI application
as a case study. Such method and experimental results
rely on the cost ratio between executing the application on
the local and the cloud infrastructure. Nonetheless, they do
not evaluate the impact of VM allocation strategies on the
cost and performance of the cloud.

In 2008, Evangelinos and Hill (2008) investigated the
feasibility of using cloud computing resources to execute
HPC workloads. They executed Coupled Atmosphere-
Ocean Climate Models and analysed the network
performance under different MPI implementations. They
concluded that the network performance was one to
two orders of magnitude below the level encountered in
dedicated systems or supercomputers. At that time, there
was no API support to ensure VMs were placed near each
other, even so, the authors concluded that the results were
encouraging.

Zaspel and Griebel (2011) investigated the appropriated
AWS cloud instances for the computational fluid dynamics
(CFD) problem with the NaSt3DGPF software. They used
a cluster placement group to make sure that the instances
were at a single location and had fast interconnect. They
observed that there was a limit of network performance
when they tried to use more instance than AWS service
default limits without a formal solicitation to use more
instances (without pre-order solicitation). They argued that
the cloud is appropriate “for moderately sized parallel CFD
problems on up to 64 CPU cores or 8 GPUs” and the
cloud computing is a viable alternative for mid-sized HPC
applications. Different from our work, they did not evaluate
the cluster and spread placement strategies.

Folgar et al. (2017) investigated the latency impact
of allocation strategies on Bcast and Exchange MPI
collectives in a physical cluster and a private cloud
environment. By using a private cloud created with
Apache CloudStack and Intel MPI Benchmarks (IMB),
they observed that the physical cluster (cluster without
virtualization) offered a lower communication latency (up to
78% of improvement) than the private Apache CloudStack
based cloud system. They also compared the cluster
and spreed placement strategies in the private cloud and
concluded that the cluster strategy has a minor latency for
message size smaller than 4 KiB (79% of improvement)
and the spreed strategies has a minor latency for
messages larger than 4 KiB (33% of improvement). The
authors did not compare dedicated strategies (host and
instance), nor investigated a public cloud. Also, they
did not use a real application (like FWI or CFD) in their
experiments.

Materials and Methods

We selected three different server types from AWS to
conduct our experiments, as described in Table 2. The
first row shows the name of each server type and the
second one indicates the number of virtual CPUs (a.k.a.
microprocessor cores); the third row states the amount of
main memory and the remaining ones indicate the price
per hour for each allocation mode. There are no extra
costs when specifying a placement group and the user is
basically charged by the regular On-Demand price. These
prices are based on the North Virginia region on January
27th, 2019.

Type c5.2xlarge r5.2xlarge z1d.2xlarge

vCPUs 8 8 8
RAM (Gib) 16 64 64
On-Demand

0.340 0.504 0.744
Price (U$/h)
Ded. Instance

3.366 6.653 4.910
Price (U$/h)
Ded. Host

0.360 0.534 0.789
Price (U$/h)

Table 1: AWS server types

This present application of the TOY2DAC software uses the
Metis (Karypis and Kumar, 1998), Intel MKL (Intel, 2018),
Mumps (Amestoy et al., 2001) and a set of optimization
tools called Seiscope Optimization Toolbox (Métivier and
Brossier, 2016). We compiled the Metis library using the
GCC 5.4.0 compiler and the remaining ones using the Intel
compilers: mpiicc e mpiifort.

In the experiments, the Marmousi data set was sampled
for a grid of 681 × 141 points. The result after 20 iterations
for two frequencies (ω = 3 Hz and 5 Hz) is illustrated in
Figure 3.
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Figure 3: Velocity model estimated by TOY2DAC.

The application code was designed to run in parallel
machines using both the Message Passing Interface (MPI)
and the OpenMP programming APIs. Hence, it is capable
of exploring parallelism on distributed and shared memory
computers.

We first created a virtual machine disk image with Ubuntu
16.04 LTS and installed the TOY2DAC and the required
libraries. Then, in order to investigate the impact of the
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VM allocation strategies on the application performance,
we executed 8 MPI processes on 4 VMs, being 2 processes
per VM, and 4 OpenMP threads per process, a total of 32
threads (8 per VM). We execute the application three times
and compute the median and the standard deviation.

Also, we used the ping Linux tool to measure the
communication latency between each pair of VM and we
use it as a metric of inter VM communication performance.
We first compute the average time required to send 20
packages of 64 bytes each between two VMs. Finally, we
compute the average latency between all 4 VMs and the
standard deviation.

Experimental Results

Table 2 presents the average latency between VMs
measured when instantiating the 4 VMs using different
allocation strategies. It is possible to notice that there is a
clear performance difference between allocation strategies
and that the dedicated host and dedicated instance
approaches provide the lowest latencies. Also, the cluster
mode provides, in general, better latencies than the spread
and the default modes.

Type c5.2xlarge r5.2xlarge z1d.2xlarge

cluster 0.090±0.007 0.100±0.005 0.065±0.010
spread 0.159±0.025 0.099±0.006 0.146±0.024
ded. host 0.061±0.011 0.056±0.009 0.052±0.006
ded. inst. 0.059±0.007 0.054±0.008 0.053±0.006
default 0.168±0.026 0.104±0.006 0.150±0.032

Table 2: Average ping latency between VMs (ms)

Table 3 shows the time it took to execute the TOY2DAC
application for each allocation strategy and VM type.

Type c5.2xlarge r5.2xlarge z1d.2xlarge

cluster 162.312 177.085 140.873
spread 171.201 176.336 154.856
ded. host 159.281 160.679 147.777
ded. inst. 153.865 160.734 146.003
default 181.456 177.734 158.949

Table 3: TOY2DAC execution time (s)

By comparing Tables 2 and 3 it is possible to notice that
there is a correlation between the average communication
latency among VMs and the performance of the TOY2DAC
application. Figure 4 plots the TOY2DAC execution time
against the average latency between VMs and suggests
that this relation is almost linear.

The result presented in Figure 4 corroborates our
hypothesis that the allocation strategy may affect
communication latency and, as a consequence, the
performance of the application. Also, these results
indicate that the dedicated host and dedicated instance
modes provide lower latency and reduced execution times.
Nonetheless, the increased prices associated with these
two modes may cause the total execution cost (calculated
by multiplying the execution time by the price per hour) to
be higher than the other modes.

(a) c5.2xlarge server type

(b) r5.2xlarge server type

(c) z1d.2xlarge server type

Figure 4: Average ping latency between VMs versus
performance of the FWI application.

Table 4 presents the total cost normalized by the best
allocation mode for each VM type. For example,
the dedicated host mode costs 2.44 times more than
the cluster mode when executing the TOY2DAC on a
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c5.2xlarge VM type.

Type c5.2xlarge r5.2xlarge z1d.2xlarge

cluster 1.00 1.04 1.00
spread 1.07 1.04 1.10
ded. host 2.44 3.13 1.74
ded. inst. 1.02 1.00 1.10
default 1.13 1.05 1.13

Table 4: TOY2DAC execution cost normalized by the best
allocation mode for each VM type

Table 4 indicates that the dedicated host mode causes the
execution cost to be 1.7 to 3.1 times more expensive than
the best mode for each VM type. Nonetheless, the other
allocation strategies provide very similar costs (less than
13%).

Even though the price per hour of the dedicated instance
mode is higher than the cluster, spread and default modes,
its reduced execution time cause it to offer a competitive
cost in this experiment.

Figure 5 shows the total execution cost versus the
execution time for each allocation strategy and VM type.
These results indicate that the dedicated instance mode
offers a good trade-off between performance and cost. The
dedicated host mode offers, in general, better performance,
however, its cost is usually high. The spread and the
default modes do not provide good performance and the
cost is often a little higher than the ones achieved by
the dedicated instance and the cluster mode. Finally, the
cluster mode provides a very good execution cost, but its
performance may vary drastically, being the best one when
using z1d.2xlarge server types and one of the worse when
using r5.2xlarge server types.

The experimental results indicate that the virtual machine
allocation strategy may affect both: the execution time and
the cost of executing high-performance parallel code on the
cloud.

Conclusions

In this work, we explored the impact that different virtual
machine allocation strategies have on the performance and
cost of executing a high-performance geophysics software
on the AWS cloud. We evaluated how 5 different allocation
strategies (default, cluster, spread, dedicated host and
dedicated instance) affect the cost and the performance of
an FWI application on three different virtual machine types.

Our results indicate that the virtual machine allocation
strategy may significantly affect the execution time and the
cost of executing a high-performance parallel application
on the cloud. For the experimental setup used in
our experiments, the default allocation strategy was, on
average, 1.10 to 1.17 times slower than the fastest strategy.
Also, the dedicated host strategy was 1.7 to 3.1 times
more expensive than the cluster strategy. The cluster
strategy, on the other hand, offered the best costs but its
performance is not always good. Finally, the dedicated
instance mode offered a very good trade-off between cost
and performance.

In future works, we plan to explore different applications

(a) c5.2xlarge server type

(b) r5.2xlarge server type

(c) z1d.2xlarge server type

Figure 5: Execution cost versus execution time for each
allocation strategy and VM type.

and virtual machine types to make these conclusions more
general.
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