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Abstract

Deep Learning experiments require large amounts
of labeled data, but few annotated seismic datasets
are available and annotation is a time-consuming,
expensive activity. Synthetic modeled datasets may be
a viable alternative. However, they lack the variability
and intricacies of a real data signal. Moreover,
methods that add colored noises are not enough to
represent such variability. Thus, our goal is to produce
a noise type that is characteristic of real data to
create a viable synthetic dataset to train Deep Learning
models. In this context, we apply the Neural Style
Transfer technique, which combines the structural
content of an image with the textural style of another,
to produce a synthetic data with noise characteristics
extracted from a real dataset. The results show that the
stylized synthetic seismic data preserves the modeled
content while incorporating characteristics of some
real data chosen as style, creating synthetic data with
a more realistic noise profile.

Introduction

In recent years, we have observed a steep increase in
Deep Learning (DL) research applied to geophysical
problems, such as the usage of Deep Neural
Networks (Araújo et al., 2018), Convolutional Neural
Networks (Wu et al., 2018), and Generative Adversarial
Networks (Lu et al., 2018). In the context of the
seismic data, works are emerging in data processing and
interpretation, related to topics such as noise removal, data
interpolation, seismic fault detection, fascias classification,
and several others.

Although DL techniques have been successful in
increasingly complex tasks, the necessary amount of data
to train such systems is very high, typically on the order
of tens of thousands for proof-of-concept research and
millions of training examples for more robust, industrial
applications. As discussed by Saxena (2018), one of the
challenges for DL research in this field is that seismic
data are abundant but very little of it is appropriately
labeled. Mainly due to its costly nature, requiring manual,
specialized labor to annotate each data set.

As the scarcity of labeled data sets is an obstacle in

applying DL tools to seismic data, the use of synthetic data
presents itself as an alternative to this limitation. Many
seismic phenomena have well understood and accepted
mathematical models, and usually these models can be
used to generate synthetic data. Since the model is known,
synthetic data are labeled by construction. However, the
apparent drawback of synthetic data is that it lacks the
feature richness of real seismic data. In other words, if on
the one hand, we may be able to perform proof-of-concept
experiments, on the other quickly we may overestimate
how well a DL system is adequate to solve a problem in
a real-world situation.

Two common strategies in adding uncertainty to synthetic
data are the addition of colored noise (typically some
Gaussian distribution within a particular frequency
bandwidth) and the superposition of a noise-only section
of real data (see Brenders and Dellinger (2016), for
example). The limitation of the first strategy is that it
does not capture all the nuances of real data noise. The
limitation of the second strategy is that typically only deep
marine data have large enough noise-only sections, so
other types of data cannot be aptly represented.

This work investigates a different approach to the problem:
we propose to use the Neural Style Transfer technique to
enrich synthetic data with real seismic data characteristics.
In other words, given a synthetic data S and a real data R,
we produce a new data that has the structure profile of S
(what was modeled) with the feature profile of R.

Neural Style Transfer

Neural Style Transfer (NST) is a technique that combines
the content of an image with the style of another to produce
a novel result, such as the one presented in Figure 1. This
section presents the NST technique, in the color image
context of the original paper (Gatys et al., 2016).

Typically, we represent a digital color image by three
color channels, red, green and blue (RGB). Convolutional
Neural Networks learn to extract features from this raw
representation in a hierarchy of abstractions, with the
first layers learning simple features such as edge or
texture detection and the latter layers learning increasingly
abstract features, up to classification of different objects
(Lee et al., 2009). This hierarchical abstraction allows for
object recognition independent of characteristics such as
color, size, orientation, and framing.

Gatys et al. (2016) showed that we can correlate these
layers with information about content and style in an image.
This is the insight that led to the Neural Style Transfer
technique, which creates an image that both correlates
its content with one image and its style with another.

Sixteenth International Congress of The Brazilian Geophysical Society



ENRICHING SYNTHETIC DATA WITH REAL NOISE USING NST 2

(a) Content image (b) Style image (c) Stylized result

Figure 1: Example of the Neural Style Transfer technique. Figure reproduced from Gatys et al. (2016).

To implement the technique, the authors used a pre-
trained VGG network (Simonyan and Zisserman, 2014) as
a feature extractor.

Definitions

In this section, we present the Neural Style Transfer’s
loss function as presented in Jing et al. (2017). NST
is essentially an optimization problem which the goal is
to generate an image I that combines the content of a
reference image IC with the style of another image IS. Lets
define:

• Feature map: F l(I) ∈ RC×H×W is the output volume
of VGG’s layer l, with dimentions C (number of
channels), H (height) and W (width).

• Reshaped feature map: F l
R(I) ∈ RC×HW is the output

of the linearization of each H ×W channel to a HW
size vector.

Given the content and style images (IC and IS) and
respective feature and reshaped feature maps, we can
define I∗ as the image that best combines content and
style, minimizing

I∗= argmin
I

Ltotal(IC, IS, I)

= argmin
I

αLC(IC, I)+βLS(IS, I).
(1)

In Equation 1, α and β are the hyperparameters that
balance the content preservation vs stylizing trade-off.

The content cost LC is defined as the sum of the Euclidean
distances between the ’ feature maps of each layer of the
generated and content images:

LC = ∑
l∈{lC}

||F l(IC)−F l(I)||2, (2)

where l is a layer in lc, which is the set of layers chosen to
correlate with the content features.

The style cost is based on the Gram matrix of the reshaped
feature maps, where each entry Gi, j is the scalar product
between columns i, j of a given matrix. In this context,
the Gram matrix correlates color and texture without regard

to the global arrangement. The Gram matrix for each
reshaped feature map is computed as

G(F l
R(I)) = [F l

R][F
l
R]

T . (3)

The style cost is then defined as

LS = ∑
l∈{lS}

||G(F l
R(IS))−G(F l

R(I))||2. (4)

Again, the optimization’s goal is to minimize the total cost,
defined as a linear combination of LS and LC:

Ltotal = αLC +βLS. (5)

Stylization process

The Neural Style Transfer technique might be summarized
as follows:

1. Choose the set of layers that will be used to compute
each feature map. It is worth to notice that the style’s
set of layers might be different from the content’s.

2. Forward propagation: feed the convolutional network
with style and content images in order to obtain all the
desired feature maps.

3. Initialize the generated image with the content image
or with random noise.

4. Repeat the forward propagation, now using the
generated image, compute its feature maps and
calculate LC, LS and total loss Ltotal .

5. Update the generated image (this is the optimization
step).

6. Repeat steps 4 and 5 until some criteria for ending
the optimization process is met (typically a fixed set of
iterations).

The criteria used to determine which layers to pick
for style’s and content’s sets influences the outcome.
Particularly, the choice of deeper layers for the content
results in higher levels of distortions in the generated image
in contrast with choosing shallower layers.
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In Figure 1 we illustrate an example of Neural Style Transfer
from the original paper.

Methodology

Our goal is to adapt the NST technique for seismic data
instead of images. Verma and Smith (2018) presented a
method for synthesizing sounds with Neural Style Transfer.
They illustrated the method applying a tuning fork timbre
(style) to a melodic harp line (content) and a violin timbre
(style) to a vocal melodic line (content), effectively showing
that the Neural Style Transfer technique can both remove
and add spectral components, respectively. Hence, they
demonstrated that the technique can also be applied
to other types of signals than image. In this section,
we present how the input and output for the NST were
transformed to work directly with seismic data.

Input data specifications

The convolutional neural network VGG requires as input
an image with minimum size of 224×224 pixels and
three color channels (BGR or RGB), but, aside from
memory constraints, there is no upper bound since only
the convolutional layers are used. Therefore, content, style,
and stylized images must fit these specifications, but they
do not need to have the same sizes. In this type of image
representation, each input pixel is a combination between
the intensity of each channel, blue (B), green (G) and red
(R) and these values vary in the discrete range of [0, 255].

Before the stylization process begins, it is necessary to
pre-process the input image so that each channel has an
approximate mean value equals to zero. The VGG network
was trained on the ImageNet dataset (Deng et al., 2009)
and centering was done by subtracting the ImageNet mean
of each channel (Gatys, 2017). The final range of each
channel is [-123, 131] for red, [-116, 138] for green and [-
103, 158] for blue. Our seismic data will have to be scaled
to occupy approximately these ranges.

Pre-processing seismic data

The 2D seismic data that we used in this study are different
from the expected input described above. To fit VGG input
requirements, we made the following transformations:

1. First, we construct a 3D volume by repeating the
seismic data in each color channel. In this process,
each sample s with amplitude a is converted into a
pixel with RGB values equal to a;

2. Then, we normalize each channel in order to fit each
corresponding channel range;

3. Finally, we use the previous’ step outcome as input to
the convolutional neural network.

Stylizing synthetic data

Given some synthetic data as content and some real
seismic data as style, the stylization process is as follows:

1. Apply some noise to the synthetic data. This
is important because the NST technique does not
seems to apply the style in regions where the content
is blank (more on that in the Results section);

2. Pre-process content and style data with the pre-
processing steps above;

3. Initialize the stylized (target) data with the content
data or with random noise (both approaches may yield
good results, as discussed in the original paper);

4. Apply the Neural Style Transfer technique, solving the
optimization problem;

5. Post-process the stylized data by rescaling each
channel to some desired range ([-1, 1], for example)
and collapse the three channels into one by
computing their average.

An additional step made after stylizing the data was to
sum it with the original content data. In this way, we can
highlight the original structures and control the amount of
noise applied in the synthetic data. Figure 2 illustrates the
pipeline of the whole process.

Figure 2: Diagram of the stylization process applied to
seismic data. In step a we add Gaussian noise to the
synthetic input. In b, we construct a 3D volume, repeating
and rescaling a. In c, we submit the previous output to
the Neural Style Transfer’s procedures, which also receives
some real data as style (omitted). In d we have the Neural
Style Transfer’s output. In e we collapse the 3D volume
to bring the data back to the initial seismic domain data.
Finally, in f, we add the stylized data to the initial input,
choosing a desired signal-to-noise ratio.

Example

We applied the stylization process using the real dataset
extracted from the Tacutu basin as style, presented
in Figure 3 alongside its f -k spectra, to a section of
a synthetic data named Sigsbee (Figure 4a), which
was stacked with the Common-Reflection-Surface (CRS)
method (see, e.g., Faccipieri et al., 2016). Observing
the resultant images, we see that the style tended to be
transferred to similar areas (in luminosity terms), with the
background not receiving as much noise as the areas
with events, as in the upper left area of Figure 5a. To
test this hypothesis, we added Gaussian noise to the
synthetic example before applying NST. By doing this, we
expected to distribute the luminosity uniformly along the
seismic zero-offset (ZO) stack, thus allowing the stylization
to happen beyond regions with events, as can be noted by
comparing both images.

The hyperparameters used to balance the stylization vs
content preservation trade-off were set in α = 1, β = 1000
for 500 iterations. These values are the same as the
ones suggested by Gatys et al. (2016), chosen after visual
and empirical experimentation. The outcome is shown in
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Figure 3: (left) Zero-offset stacked real reflection data Tacutu, used as style reference, and (right) its corresponding f -k spectra.

(a)

(b)

Figure 4: In (a) the synthetic reflection data Sigsbee. In (b)
Sigsbee with added Gaussian noise, signal to noise rate
set in 10.

(a)

(b)

Figure 5: Final outputs of the stylization process. In (a) the
result of stylization process applied to the panel of Figure
4a. In (b) the stylization was made on the panel shown in
Figure 4b.
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(a) (b) (c) (d)

Figure 6: f -k spectra for each version of the Sigsbee data. (a) Sigsbee clean (Figure 4a). (b) Sigsbee with added Gaussian
noise (Figure 4b). (c) Sigsbee clean stylized (Figure 5a). (d) Sigsbee noisy stylized (Figure 5b).

Figure 5. The NST technique has no concept of ocean, of
course, so the water portion of the data would have to be
muted back.

Figure 7 compares the same trace before and after the
stylization process. We can clearly perceive the added
noise, but peak location and zero-centeredness were
preserved.

The pure Sigsbee’s f -k spectra presents its events mainly
concentrated in the negative neighborhood of the zero
wavenumber (i.e. on the panel’s left-hand side), while
Tacutu has events on both sides. The f -k spectra of
the data with zero-mean Gaussian, shown in Figure 6b,
is highly similar to the pure Sigsbee’s spectra Figure 6a,
indicating that this type of noise does not add significant
spectral content. In the examples enriched by NST (as
shown in Figure 2), we see they incorporated both the real
and synthetic data’s signature. Therefore, in the Figures 6c
and 6d, we see events occurring both in the positive and
in negative wavenumber sides. This second approach
significantly changes the original data spectral content.

Figure 7: Comparison between the same trace in the
stylized and original data. Peak location and zero-
centeredness is preserved.

Limitations

The most evident drawback of the original Neural Style
Transfer technique is the time and computational resources
it demands. For each pair of data we need to combine, it is
necessary to solve a large optimization problem. Although
alternatives to the original procedures were developed in
various works, as analyzed by Jing et al. (2017), many of
them do not deliver good visual results to combinations of

arbitrary pairs of style and content.

Besides that, the effectiveness of a Neural Style Transfer
technique depends on the problem’s domain. For example,
a photo-realistic style transfer requires special care with
content preservation to avoid unwanted distortions. In our
work, we solved this problem by simply adding back the
original data to the stylized result, thus having some control
over how much noise and distortion we want to insert in the
synthetic data, but other alternatives merit investigation.

It is necessary to investigate further if some of the newer
techniques available performs better in terms of the trade-
off between time, computational resources and stylization
quality. Also, we would like to quantitatively asses the
impact of applying this technique to Machine Learning and
Deep Learning seismic data experiments, evaluating its
generality and robustness.

Conclusions

Neural Style Transfer is mainly associated with artistic
works. In our study, we explored the use of the
concept style to generate a synthetic data enriched with
meaningful noise, combining the structural content of
a mathematically modeled data with features from real
data. We also discovered that inserting an initial random
noise in the synthetic input yields better style transferring.
These generated data could then be used to train more
robust Machine Learning and Deep Learning systems,
bypassing the scarcity of annotated data, or be used to test
processing techniques such as migration or stacking.
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