Estimating Initial Velocity Models for the FWI Using Deep Learning
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Abstract

Building satisfactory initial velocity models is a crucial
task needed to achieve valuable results without spending
too much computational resources when using the full
waveform inversion (FWI) method. Many techniques
are employed as an attempt to find an initial model,
such as reflection tomography, migration-based velocity
analysis, genetic algorithms and simulated annealing.
Recently, researchers are also experimenting the use of
deep learning methods to build velocity models, but not
necessarily to be used with the FWI. This work is twofold:
1) to use a fully convolutional network (FCN) to estimate an
initial velocity model and 2) to evaluate the resulting model
on a multi-scale FWI implementation. The FCN was trained
using synthetic velocity models randomly built as its target
and their respective seismic data modelled by the finite-
difference method as its input. The models produced by
the FCN lacked some details, such as fault structures or
positioning of some layers, when compared to their ground-
truth counterpart, but that was fixed after using the FWI
method. Thus, we conclude that the results produced by
the FCN proved to be, in overall, satisfactory initial models
for the FWI.

Introduction

The FWI is a high resolution method for subsurface
parameters inversion and requires a satisfactory initial
model since it tries to solve a non-linear problem (Virieux
and Operto (2009)). In the oil and gas exploration
industry, the initial velocity model for the FWI is commonly
built by reflection tomography and migration-based velocity
analysis. Most methods proposed for this procedure are
based on time-travel tomography, but the possibility of
avoiding such methods is desirable because they can be
an exceptionally time-consuming task. Alternatives using
global methods, such as genetic algorithms and simulated
annealing, have been respectively proposed by Sajeva
et al. (2016) and Datta and Sen (2016). However, the
bigger the size of the velocity models or the population
being considered, the higher the number of modelling steps
and their computational cost. Lately, there has also been

an increasing appeal of using deep learning methods to
solve a diverse range of problems from different areas of
knowledge, including geophysics applications (Lewis and
Vigh, 2017); (Araya-Polo et al., 2018); (Wu et al., 2018).

In this context, we analyse the use of a FCN to generate
initial models for the FWI. We implement the FWI method
on the time domain using a multi-scale approach on
the frequency domain with the finite-difference method to
solve an acoustic wave equation. The FCN follows the
architecture used by Wang et al. (2018) with modifications
on its optimiser and metrics. We also applied a different
positioning scheme of sources and receivers to simulate
a more conventional seismic acquisition. Therefore, our
work aims to estimate the initial model, instead of directly
estimating the final model with the FCN as proposed by
Wang et al. (2018), and to prove that the FCN can produce
an optimal initial model for the FWI.

Fully Convolutional Network

Convolutional neural networks (CNNs) try to mimic some
features of the visual cortex of the brain (Min et al.,
2017) and they are well-suited to work on two-dimensional
images. Even though the CNN was firstly proposed by
LeCun et al. (1989), its usage has been gaining even
more terrain since the implementation of the AlexNet
(Krizhevsky et al., 2012), a variation of the original CNN
which achieved a significant performance on the ImageNet
database. Other variations of the conventional CNN were
also proposed, such as the fully convolutional network
(Long et al., 2015).

For this work we use an FCN closely related to the one
discussed by Wang et al. (2018): an encoding section
consisting of successive layers of 3x3 convolutions, using
batch normalisation and the rectified linear unit (ReLU)
activation function, and 2x2 max-pooling, a decoding
section having 2x2 up-sampling layers in conjunction with
2x2 convolutions followed by 3x3 convolution layers, and
a final 1x1 convolution layer to yield the predicted model
applied in a section of the last 3x3 convolution output
cropped to match the velocity model’s size. On one
hand, the convolution layers organise feature maps that
perform filtering operations mathematically similar to a
discrete convolution, whilst the pooling layers combine
related features into one (LeCun et al., 2015). On the other
hand, up-sampling layers substitute the pooling layers in
the reverse operation to increase the resolution of the
network’s output. This FCN model was trained on two
NVIDIA Tesla P100-SXM2 GPUs with 16GB RAM each
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during 200 epochs using a batch size of 5 samples.

Our approach, when compared to Wang et al. (2018),
has some core differences. Firstly, although using the
same U-Net configuration and loss function as theirs,
we used the Adam optimiser (Kingma and Ba, 2014)
implementation available with Keras (www . keras.io) and
alearning rate of 1 x 1073 instead of the default Stochastic
Gradient Descent (SGD). Furthermore, since predicting
the velocity model can be seen as a regression problem,
we evaluated other four metrics besides the loss function
- mean squared error (MSE) -, namely: mean absolute
error (MAE), R2, Pearson coefficient r and factor of two.
Another key difference is the fact that we use larger
velocity models and our seismic data were modulated
with a different configuration of sources and receivers, as
explained further.

Synthetic Velocity Model

The velocity models represent a section of subsurface
of 3000 meters in depth by 9225 meters in length and
they were generated from a predefined configuration of
minimum and maximum velocity, number of samples in the
z (nz) and x (nx) axes, number of spacing intervals on both
axes (dz and dx) and minimum and maximum number of
layers. We set the minimum and maximum velocities to
1500 and 3500 m/s respectively, 150 samples of both z
and x axes with spacing interval of 20 and 61.5 meters,
respectively, and the number of layers varying from 8 to 12.
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Figure 1: Velocity model generated with 10 layers,
undulation, inclination, but no fault structures

For each velocity model generated, we randomly draw
its number of layers and whether the layers should
be undulated, inclined or contain fault structures. We
randomly pick these parameters so the FCN could be
trained with a large variety of models. The velocity of each
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layer increases in a rate of o Tayers Figure 1

shows one of the generated velocity models.

Data Acquisition

The seismic data were generated using the finite-difference
method of 32nd order for an acoustic wave equation with
a Ricklet wavelet having a maximum frequency of 18.4

Hz filtered to be 12.20 Hz. We used 50 sources equally
spaced 184.5 m one from another on the x axis and 150
receivers spaced 61.5 m and placed on the same level of
the sources. We chose this configuration of sources and
receivers because it is more likely to occur in real data
acquisitions. Our number of samples in the time domain
is 1500 (nt) with a sample interval of 0.002 (d¢), totalling 3
seconds of sampling. The modelling step used in the FWI
method follows the same configuration as the one used to
model the seismic data, but using the frequency of 18.4 Hz
instead of the 12.20 Hz.

Results

The evolution of the FCN was monitored every two epochs
during the training step by predicting and plotting one of the
models from the testing dataset. We can notice in Figure
2 that, although the result during the first epoch seems
to be only composed of a water layer, the FCN model is
able to gradually identify not only the beginning and ending
of more layers, but also their undulation and inclination.
However, two problems can be primarily pointed out: by
the end of the training neither of fault structures, nor
the beginning and ending of some layers were correctly
identified.

The FCN took 18 hours to train all 200 epochs, but
predicting 20 models from the testing dataset only took,
approximately, 16 seconds. This means that once the
seismic data is acquired, an initial velocity model can be
inferred in less than one second. Figure 3 shows two
examples of predicted models to aid our analysis of the
problems previously stated. Table 1 shows the evaluated
metrics with the fully trained model on the testing dataset.
The goal is to minimise the MSE and MAE metrics, whilst
maximising R2, Pearson r and Factor of Two to as close
as possible of 1. As we can see, the model achieved
a value relatively low of approximately 65.6 for the mean
absolute error, meaning that the velocities of the predicted
models differ more or less 65.6 m/s from the true model,
in average. Furthermore, we obtained desirable values of
R? and Pearson r that are close to 1 and Factor of Two
exactly 1. This indicates, as we can confirm in Figure
3, that the predicted model is highly correlated to its true
counterpart. However, the high value of MSE justifies the
lack of precision in determining the beginning and ending
of inclined layers (as seen in models 3a and ??) and
identifying fault structures (models 3c and ??).

Metric Value
MSE 10188.0654
MAE 65.5954
R? 0.9671
Pearson r 0.9840
Factor of two 1.0000

Table 1: Evaluation Metrics of the FCN Model

The next step was to feed one of the predicted models
to the FWI method. Once again we chose the model
depicted in 1. As it was previously noted, the predicted
model does not contain the fault structures and some layers
are incorrectly positioned. Both problems are respectively
identified in Figure 4b by an ellipsis and two arrows.
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Figure 2: Prediction output during the training step at, respectively, the a) 1st, b) 75th, c) 151st and d) 199th epochs of the

model introduced in Figure 1
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Figure 3: Results of two velocity models from the testing dataset along with their respective ground-truth model.
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Figure 4. Comparison of (a) the ground-truth model, (b) the predicted model (FCN result), (c) the model after using the FWI
method and (d) the decreasing rate of the RMS error on each iteration of the FWI

Nonetheless, this lack of details is expected because the
FCN produces an initial velocity model, whilst the FWI is
responsible for generating the final inverted model. As
we can see in Figure 4d, we can confirm again that the
predicted velocity model poses as a satisfactory initial
model due to the low RMS error at the beginning of the
FWI. Furthermore, the FWI was indeed able to further
improve the velocity model by identifying the once absent
fault structures and adjusting the position of some layers.
This improvement is shown by the ellipsis and arrows in
Figure 4c and by the decreasing rate of the RMS error in
Figure 4d.

Conclusion

The FCN demonstrated to be a valuable tool for building
optimal initial velocity models for the FWI method.
Even though the initial velocity models generated by
this technique lack details of fault structures and have

difficulties in determining the correct position of inclined
layers, once the training and validation phases were
performed, the method is pretty fast for inferring an initial
velocity model, requiring quite few computational resources
and less human interference to provide an initial model
highly correlated to the ground-truth model, containing low
error rate on the velocity values. Furthermore, since it
generates an initial velocity model to be used as an input to
the FWI technique, it is this combination of such methods
that aims to adequately predict the final velocity model. So,
using the initial model that has been inferred by the FCN,
the FWI finally corrected the fault structures identification
and inclined layer positioning. Further studies point to the
improvement of this technique for building initial velocity
models, the comparison of it with the genetic algorithm
and particle swarm optimisation techniques and the usage
of other deep learning methods and higher complexity
models, such as the Marmousi.
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