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Abstract

To build a seismic image we need to process the
information from rock interfaces reflections. These
reflections occurs as function of the impedance
properties differences among the rocks, which
is calculated as a combination of density and
compressional velocity (inverse of slowness)
measurements. Halite, usually the most abundant
mineral on the section so-called salt, has an average
density about 2,14 g/cm3 and compressional velocity
in the order of 4,500 m/s. In terms of seismic studies,
until the extreme recent time, the evaporite section
was considered to be approximately constant, and
reflecting the properties of halite. However, with
the evolution of seismic migration algorithms and
the computational capacity, it was perceived the
need to make the salt section less homogeneous,
since the evaporites formation (the evaporation
process) occurs in stages, according to specific
evaporation rates , generating the observed layering,
still also denominated as stratifications, ”enigmatic”
reflectors/structures. In order to overcome this
problem, we need better-elaborated velocity models
that take into account these stratifications. In this
work we used images of seismic sections and two
types of seismic attributes, which will serve as
input for a selected Machine Learning algorithm.
Thereby allowing identifying from these 2D sections
the stratifications within the salt layer allowing the
characterization of the corresponding salt type.

Introduction

The field-reservoir under study is located in the central
portion of the Santos Basin, about 180 km off the coast
of the municipality of Rio de Janeiro in a water depth of
approximately 1,900 m depth. The reservoirs of this field
are situated between 5,000 and 6,000 m below the sea
level and under a layer of salt, the Ariri Formation, which
can range from a few hundred meters to over 2,000 m.
We do know that this formation is not a homogeneous
one, and that it is composed of different types of stratified
minerals, the (evaporites). Usually, in the exploratory wells,
the log registering of this layer of evaporites is carried out
because these are ”unknown” areas. In development wells,

in general, the logs are no longer acquired within this layer
mainly because the project economy. Depending on the
complexity of the field and the saline structuring, there are
variations in these ”strata” and in their thickness, Oliveira
et al. (2015), indicated an inverse correlation between ”salt
thickness” and ”salt velocity variation”. There are many
types of evaporite minerals within the evaporitic section
in the Santos and Campos basins, the most common
being halite, anhydrite, gypsum, carnallite, tachyhydrite,
sylvite. Studies carried out in log analysis show that not
all these types of minerals will be seismically detectable
by amplitude (Gobatto et al., 2016). Thus, to facilitate
the strata identification, the evaporitic minerals in the salt
section were grouped into three major facies: halite, high
velocity salts (anhydrite and gypsite) and low velocity salts
(carnallite, sylvite and tachyhydrite) as per emphasized in
Maul et al.(2018). Table 1 presents the mineral grouping
as proposed by Maul et al. (2018), indicating the chemical
formula of each mineral as well as their acoustic properties.

Table 1: Mineral groups and respective properties, average
values compiled by Maul et al. (2018) covering more than
200 well in Santos Basin. Low Velocity Salts (LVS), Halite
(Background) and High Velocity Salts (HVS).

Maul et al. (2018) based on the methodology proposed
by Amaral et al. (2015), compiled the information from
more than 200 wells in Santos Basin, showing the halite
predominance, over 80% of occurrence. This percentage
explains why it is considered as the background class and
the main reason the seismic processing starts from the
halite velocity property for the entire salt section at the
tasks the velocity is needed. The remaining 20% of mineral
occurrence can be split as:

• Anhydrite, gypsum, with high values of density and
compressional velocity (compared to Halite), facies
with low solubility. The basal Anhydrite represents the
main seal of reservoirs in the Santos Basin.

• Tachyhydrite, carnallite, and sylvite, whose densities
and compressional velocities are smaller than the
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groups described above. They are also more soluble,
a factor that makes drilling wells more difficult in this
basin.

• Other studies also considered halite, the background
mineral in this section, representing 75-90% of
occurrences (Yamamoto et al., 2016, Gobatto et
al., 2016).The proportion of salt varies for each
well and its magnitude is related to the geological
conditions where the well was drilled. In the ”salt
walls” Halite normally represents more than 90% and
in the mini basins the proportion of salt with high
and low velocities varies between 10 and 20% each,
consequently decreasing the halite content.

These differences in density and compressional velocity
create the clear reflections within the ”saline section”.
These seismic responses have received several
denominations, such as: Enigmatic Reflector (Mohriak
et al., 2004); Enigmatic Structure (Jackson et al., 2015);
Stratification (Maul et al., 2015)). Ji et al. (2011)
already indicates that even the insertion of randomly
heterogeneities into the salt (the so-called ”dirty salt”)
already assists in the production of better seismic images
by their selected migration algorithms.

Materials and Methods

To date, Machine Learning has been used in the seismic
scale to predict geological structures, stratigraphy, and rock
and fluid properties, usually through seismic interpretation
and inversion. In order to do so, fully convolutional deep
networks have been used in the area of fault interpretation
(Long et al., 2015), 3D convolutional neural networks
(Waldeland et al., 2018) and deep encoder-decoder
networks for stratigraphic interpretation (Badrinarayanan et
al., 2015 ). These techniques classify a 3D Post-Stack data
set based on 3D sub-cubes or 2D sections, and require a
relatively low number of labels. Interpretation in seismic
images has long used texture attributes to better identify
and highlight areas of interest. These can be seen as
feature maps in seismic texture. For salt, it can be noted
that the texture in the salt masks are quite chaotic, where
the surrounding seismic is more ”striped”. However this is
not always true, as we can see in the Santos Basin, where
the salt layer is highly stratified.

In this work we use an unsupervised classification
algorithm, where the classes we wish to find are
the 3 evaporite groups, according to the nomenclature
mentioned in Maul et al., (2018): LVS, Halite and HVS.

The seismic data used here is a piece of a Pre-Stack Depth
Migration type (PSDM). From this data was extracted an
in-line in SEG-Y and the amplitude response was used as
one of the inputs of the algorithm.

Another seismic attribute used was the Relative Acoustic
Impedance (RAI), which is a good seismic attribute for the
quantitative analysis of beddings (especially in thin strata
such as in our case), due to its low amount of low frequency
content. Samples with lower seismic amplitude have
RAI values related to LVS; samples with higher seismic
amplitude have RAI values related to HVS; the remainder
can be characterized as halite. To calculate the attribute
we use the amplitude response in the extracted in-line and
used as the second input for the algorithm.

The third seismic attribute entry was the TECVA
(Amplitudes Volume Technique) type. This attribute aims
at the generation of amplitude maps and vertical and
horizontal seismic sections that reflect, as far as possible,
subsurface geology. Where the knowledge of geology is
very dependent on seismic information, it is necessary the
details of imaging at the boundaries between the seismic
sequences or their inner layers (Bulhões and Amorim,
2005). The Elementary SeismoLayer is the rock layer of
smaller thickness that the seismic data can solve and it is
defined as the key element of weighting for the calculation
and obtaining of the seismic data with the TECVA.

In our case the salt stratifications can be of the magnitude
of only a few meters, way below the seismic resolution.
Therefore, we need seismic attributes that focus on the
high frequencies such as RAI and TECVA combined, in
order to better define the stratifications within the salt. A
comparison of the three can be seen in figure 1.

Figure 1: Images used as input: on the left, seismic
amplitude section; on the center, relative acoustic
impedance; on the right, the TECVA.

Clusterizing

In our case, because it is an image with many features,
we used an unsupervised classification that separates the
pixels by classes in clusters, for this a sliding window was
used on the image as in figure 2, as per defended by Yang
et al. (2016).

Figure 2: Sliding window. Source: Yang et al. (2016).

For the clusters classification , we use the algorithm t-
SNE (van der Maaten and Hinton, 2008). It is a nonlinear
dimensionality reduction technique suitable for use with
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high-dimensional data for visualization in a small space,
as two or three dimensions. Specifically, it models each
high-dimensional object by a two-dimensional or three-
dimensional point such that similar objects are modeled
by nearby points and distant points model different objects
with high probability. The resulting clustering can be seen
in figure 3.

Figure 3: Pixels classified into clusters, each representing
a class found in the input images

t-SNE is based on probability distributions with random
walk in neighborhood graphs to find the structure within the
data. Given a set of N high-dimensional objects x1, ...,xN ,
t-SNE first computes probabilities pi j that are proportional
to the similarity of objects xi and x j, as follows:

p j|i =
exp(−xi−x2

j/2σ2
i )

∑k 6=i exp(−xi−x2
k/2σ2

i )
, (1)

As van der Maaten and Hinton (2008) explained: ”The
similarity of datapoint x jx j to datapoint xi is the conditional
probability, p j|i, that xi would pick x j as its neighbor if
neighbors were picked in proportion to their probability
density under a Gaussian centered at xi.”

pi j =
p j|i + pi| j

2N
(2)

Moreover, the probabilities with i = j are set to zero : pi j = 0

The bandwidth of the Gaussian kernels σi, is set in such a
way that the perplexity of the conditional distribution equals
a predefined perplexity using the bisection method. As a
result, the bandwidth is adapted to the density of the data:
smaller values of σi are used in denser parts of the data
space.

Since the Gaussian kernel uses the Euclidean distance
xi− x j, it is affected by the curse of dimensionality, and
in high dimensional data when distances lose the ability
to discriminate, the pi j become too similar (asymptotically,
they would converge to a constant). Schubert and Gertz
(2017) proposed to adjust the distances with a power
transform, based on the intrinsic dimension of each point,
to alleviate this.

t-SNE aims to learn a d-dimensional map y1, . . . ,yN (with
yi ∈ Rd) that reflects the similarities pi j as well as possible.
To this end, it measures similarities qi j between two points
in the map yi and y j, using a very similar approach.
Specifically, qi j is defined as:

qi j =
(1+yi−y2

j)
−1

∑k 6=l(1+yk−y2
l )
−1 (3)

Herein a heavy-tailed Student’s t-distribution (with one-
degree of freedom, which is the same as a Cauchy
distribution) is used to measure similarities between low-
dimensional points in order to allow dissimilar objects to be
modeled far apart in the map. Note that also in this case
we set qii = 0.

The locations of the points yi in the map are determined
by minimizing the (non-symmetric) Kullback–Leibler
divergence of the distribution Q from the distribution P,
that is:

KL(P||Q) = ∑
i 6= j

pi j log
pi j

qi j
(4)

The minimization of the Kullback–Leibler divergence with
respect to the points yi is performed using descending
gradient. The result of this optimization is a map
that reflects the similarities between the high-dimensional
inputs.

Classifying

After finding all of the classes for the input images in
separate clusters, we saved the resulting cluster labels.
Then we train a classifier using these labels as a target
variable and use it for classifying a new image. At this
classification, we use two methods, K-Means centers and
cKDTree in order to compare.

• K-Means classification is a method of vector
quantization,it aims to partition n observations into
k clusters in which each observation belongs to the
cluster with the nearest mean, serving as a prototype
of the cluster. This results in a partitioning of the data
space into Voronoi cells. The center points are vectors
of the same length as each data point vector and are
the “X’s” in figure 3. Each data point is classified by
computing the distance between that point and each
group center, and then classifying the point to be in
the group whose center is closest to it.

• cKDTree provides an index into a set of k-dimensional
points which can be used to rapidly look up the
nearest neighbors of any point.The used algorithm
is described in Maneewongvatana and Mount (1999).
The general idea is that the KDTree is a binary tree
in which every leaf node is a k-dimensional point.
Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the
space into two parts, known as half-spaces. Points
to the left of this hyperplane are represented by the
left subtree of that node and points to the right of the
hyperplane are represented by the right subtree. The
hyperplane direction is chosen in the following way:
every node in the tree is associated with one of the k
dimensions, with the hyperplane perpendicular to that
dimension’s axis. So, if for a particular split the ”x”
axis is chosen, all points in the subtree with a smaller
”x” value than the node will appear in the left subtree
and all points with larger ”x” value will be in the right
subtree. In such a case, the hyperplane would be set
by the x-value of the point, and its normal would be
the unit x-axis, (Bentley, 1975).
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Figure 4: A 3-dimensional cKDTree. The first split (the red
vertical plane) cuts the root cell (white) into two subcells,
each of which is then split (by the green horizontal planes)
into two subcells. Finally, four cells are split (by the four
blue vertical planes) into two subcells. Since there is no
more splitting, the final eight are called leaf cells. Source:
http://www.stat.purdue.edu/ btyner/packages.html

Results

From what we could observe until this stage of this
research, the t-SNE algorithm is the proper one for this
kind of work, which involves the information clusterization,
better identifying the image features in a timely manner and
a small error of only 2.66% after 1,000 iterations. From that,
we used the cluster labels generated to classify another
image with two different algorithms, K-Means and cKDTree.

When we compare the resultant images, we clearly can see
that cKDTRee was better to classify the image not only on
the salt region but also in its surrounds. As we can see on
figure 5 (a) a thinly laminated sequence outside the salt,
inside the black circle, posed a challenge to imaging. It is
due to the low seismic resolution, which is limited to 25 m,
causing the image to be blurred and with small definition
on this region. Beyond this, some parts of the salt tend to
show a homogeneous behavior, as shown inside the red
circle.

After using the K-Means classification, figure 5 (b) it had
a small improvement. However, it still showed that blurred
behavior of the original image.

When we used the cKDTree classifier, figure 5 (c), we
could finally see some features we could not see before,
on the original image. Some regions of the salt started
to present a clear stratification showing different classes,
colors, where it was previously more homogeneous .
The blurred region outside the salt started to show the
laminations we could not see before.

Discussion and Conclusion

From what we could learn on this work, the Machine
Learning technique combined with the right seismic
attributes can be applied to improve image and generate
a more accurate model to seismic processing in regions

Figure 5: In (a) we see a seismic section image for
classification using the cluster labels found; (b) we see the
resulting classification using K-Means algorithm; (c) we see
the resulting classification using cKDTree algorithm.

where salt stratification is known as a problem. Not only
on salt but also on regions of thin laminations where the
layers are smaller than the seismic resolution, the correct
attributes, in this case RAI and TECVA , can aid to realize
features of the subsurface we could not see before.

As a future work, we plan to extend this research to a 3D
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dimension data and test other relevant seismic attributes to
see if it can improve the image not only on the salt region
but also on thinly laminated structures, providing better and
more accurate velocity models.
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